Suppr超能文献

高速无扫描整个带宽中红外化学成像。

High-speed scanless entire bandwidth mid-infrared chemical imaging.

机构信息

Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan.

Graduate School of Engineering College of Design and Manufacturing Technology, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan.

出版信息

Nat Commun. 2023 Jul 4;14(1):3929. doi: 10.1038/s41467-023-39628-6.

Abstract

Mid-infrared spectroscopy probes molecular vibrations to identify chemical species and functional groups. Therefore, mid-infrared hyperspectral imaging is one of the most powerful and promising candidates for chemical imaging using optical methods. Yet high-speed and entire bandwidth mid-infrared hyperspectral imaging has not been realized. Here we report a mid-infrared hyperspectral chemical imaging technique that uses chirped pulse upconversion of sub-cycle pulses at the image plane. This technique offers a lateral resolution of 15 µm, and the field of view is adjustable between 800 µm × 600 µm to 12 mm × 9 mm. The hyperspectral imaging produces a 640 × 480 pixel image in 8 s, which covers a spectral range of 640-3015 cm, comprising 1069 wavelength points and offering a wavenumber resolution of 2.6-3.7 cm. For discrete frequency mid-infrared imaging, the measurement speed reaches a frame rate of 5 kHz, the repetition rate of the laser. As a demonstration, we effectively identified and mapped different components in a microfluidic device, plant cell, and mouse embryo section. The great capacity and latent force of this technique in chemical imaging promise to be applied to many fields such as chemical analysis, biology, and medicine.

摘要

中红外光谱通过探测分子振动来识别化学物质和官能团。因此,中红外高光谱成像是使用光学方法进行化学成像的最强大、最有前途的候选技术之一。然而,高速和整个带宽的中红外高光谱成像是尚未实现的。在这里,我们报告了一种中红外高光谱化学成像技术,该技术使用在像平面上的啁啾脉冲上转换亚周期脉冲。该技术具有 15μm 的横向分辨率,视场可在 800μm×600μm 至 12mm×9mm 之间调节。高光谱成像在 8s 内生成一个 640×480 像素的图像,覆盖 640-3015cm 的光谱范围,包含 1069 个波长点,波数分辨率为 2.6-3.7cm。对于离散频率的中红外成像,测量速度达到 5kHz 的帧速率,即激光的重复率。作为演示,我们有效地识别和绘制了微流控器件、植物细胞和小鼠胚胎切片中的不同成分。这项技术在化学成像中的巨大潜力有望应用于化学分析、生物学和医学等多个领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9caf/10319884/599c081d32b6/41467_2023_39628_Fig1_HTML.jpg

相似文献

1
High-speed scanless entire bandwidth mid-infrared chemical imaging.
Nat Commun. 2023 Jul 4;14(1):3929. doi: 10.1038/s41467-023-39628-6.
2
Real-time mid-infrared imaging of living microorganisms.
J Biophotonics. 2016 Jan;9(1-2):61-6. doi: 10.1002/jbio.201500264. Epub 2015 Nov 17.
3
Wide-field mid-infrared hyperspectral imaging beyond video rate.
Nat Commun. 2024 Feb 28;15(1):1811. doi: 10.1038/s41467-024-46274-z.
5
Upconversion time-stretch infrared spectroscopy.
Light Sci Appl. 2023 Mar 4;12(1):48. doi: 10.1038/s41377-023-01096-4.
7
Diffraction-limited hyperspectral mid-infrared single-pixel microscopy.
Sci Rep. 2023 Jan 6;13(1):281. doi: 10.1038/s41598-022-26718-6.
9
Real-time high-resolution mid-infrared optical coherence tomography.
Light Sci Appl. 2019 Jan 23;8:11. doi: 10.1038/s41377-019-0122-5. eCollection 2019.
10
Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection.
Light Sci Appl. 2024 May 28;13(1):121. doi: 10.1038/s41377-024-01476-4.

引用本文的文献

1
Mid-infrared hyperspectral microscopy with broadband 1-GHz dual frequency combs.
APL Photonics. 2024 Oct;9(10). doi: 10.1063/5.0225616.
2
Mechanically flexible mid-wave infrared imagers using black phosphorus ink films.
Nat Commun. 2025 Jul 1;16(1):5972. doi: 10.1038/s41467-025-60942-8.
4
On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features.
Adv Sci (Weinh). 2025 Mar;12(9):e2415518. doi: 10.1002/advs.202415518. Epub 2025 Jan 10.
5
Type-printable photodetector arrays for multichannel meta-infrared imaging.
Nat Commun. 2024 Jun 18;15(1):5193. doi: 10.1038/s41467-024-49592-4.
6
Surface plasmons-phonons for mid-infrared hyperspectral imaging.
Sci Adv. 2024 May 31;10(22):eado3179. doi: 10.1126/sciadv.ado3179. Epub 2024 May 29.
7
Wide-field mid-infrared hyperspectral imaging beyond video rate.
Nat Commun. 2024 Feb 28;15(1):1811. doi: 10.1038/s41467-024-46274-z.

本文引用的文献

1
Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research.
Sci Total Environ. 2021 Jun 10;772:145478. doi: 10.1016/j.scitotenv.2021.145478. Epub 2021 Jan 30.
2
Generation of sub-half-cycle 10 µm pulses through filamentation at kilohertz repetition rates.
Opt Express. 2020 Nov 23;28(24):36527-36543. doi: 10.1364/OE.408342.
4
Dark-field hyperspectral imaging for label free detection of nano-bio-materials.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Jan;13(1):e1661. doi: 10.1002/wnan.1661. Epub 2020 Aug 5.
5
Characterization of microplastics on filter substrates based on hyperspectral imaging: Laboratory assessments.
Environ Pollut. 2020 Aug;263(Pt B):114296. doi: 10.1016/j.envpol.2020.114296. Epub 2020 Feb 29.
6
Detection of pancreatic tumor cell nuclei via a hyperspectral analysis of pathological slides based on stain spectra.
Biomed Opt Express. 2019 Aug 9;10(9):4568-4588. doi: 10.1364/BOE.10.004568. eCollection 2019 Sep 1.
7
Multicolor Discrete Frequency Infrared Spectroscopic Imaging.
Anal Chem. 2019 Feb 5;91(3):2177-2185. doi: 10.1021/acs.analchem.8b04749. Epub 2019 Jan 16.
8
Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology.
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):E5651-E5660. doi: 10.1073/pnas.1719551115. Epub 2018 Jun 4.
9
10
Mid-infrared upconversion based hyperspectral imaging.
Opt Express. 2018 Feb 5;26(3):2203-2211. doi: 10.1364/OE.26.002203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验