Suppr超能文献

基于染色光谱对病理切片进行高光谱分析以检测胰腺肿瘤细胞核。

Detection of pancreatic tumor cell nuclei via a hyperspectral analysis of pathological slides based on stain spectra.

作者信息

Ishikawa Masahiro, Okamoto Chisato, Shinoda Kazuma, Komagata Hideki, Iwamoto Chika, Ohuchida Kenoki, Hashizume Makoto, Shimizu Akinobu, Kobayashi Naoki

机构信息

Saitama Medical University, Faculty of Health & Medical Care, Yamane-1397-1, Hidaka-shi, 350-1241, Japan.

Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.

出版信息

Biomed Opt Express. 2019 Aug 9;10(9):4568-4588. doi: 10.1364/BOE.10.004568. eCollection 2019 Sep 1.

Abstract

Hyperspectral imaging (HSI) provides more detailed information than red-green-blue (RGB) imaging, and therefore has potential applications in computer-aided pathological diagnosis. This study aimed to develop a pattern recognition method based on HSI, called hyperspectral analysis of pathological slides based on stain spectrum (HAPSS), to detect cancers in hematoxylin and eosin-stained pathological slides of pancreatic tumors. The samples, comprising hyperspectral cubes of 420-750 nm, were harvested for HSI and tissue microarray (TMA) analysis. As a result of conducting HAPSS experiments with a support vector machine (SVM) classifier, we obtained maximal accuracy of 94%, a 14% improvement over the widely used RGB images. Thus, HAPSS is a suitable method to automatically detect tumors in pathological slides of the pancreas.

摘要

高光谱成像(HSI)比红绿蓝(RGB)成像提供更详细的信息,因此在计算机辅助病理诊断中具有潜在应用。本研究旨在开发一种基于HSI的模式识别方法,称为基于染色光谱的病理切片高光谱分析(HAPSS),以检测胰腺肿瘤苏木精和伊红染色病理切片中的癌症。采集了包含420 - 750 nm高光谱立方体的样本,用于HSI和组织微阵列(TMA)分析。通过使用支持向量机(SVM)分类器进行HAPSS实验,我们获得了94%的最大准确率,比广泛使用的RGB图像提高了14%。因此,HAPSS是一种适用于自动检测胰腺病理切片中肿瘤的方法。

相似文献

1
Detection of pancreatic tumor cell nuclei via a hyperspectral analysis of pathological slides based on stain spectra.
Biomed Opt Express. 2019 Aug 9;10(9):4568-4588. doi: 10.1364/BOE.10.004568. eCollection 2019 Sep 1.
6
Detecting brain tumor in pathological slides using hyperspectral imaging.
Biomed Opt Express. 2018 Jan 25;9(2):818-831. doi: 10.1364/BOE.9.000818. eCollection 2018 Feb 1.
7
Detection and margin assessment of thyroid carcinoma with microscopic hyperspectral imaging using transformer networks.
J Biomed Opt. 2024 Sep;29(9):093505. doi: 10.1117/1.JBO.29.9.093505. Epub 2024 Jul 24.
8
Conditional Generative Adversarial Network (cGAN) for Synthesis of Digital Histologic Images from Hyperspectral Images.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12471. doi: 10.1117/12.2653715. Epub 2023 Apr 6.
10
Hyperspectral Imaging and K-Means Classification for Histologic Evaluation of Ductal Carcinoma .
Front Oncol. 2018 Feb 7;8:17. doi: 10.3389/fonc.2018.00017. eCollection 2018.

引用本文的文献

1
2
Possibility of determining high quantitative fecal occult blood on stool surface using hyperspectral imaging.
J Gastroenterol. 2025 Jan;60(1):77-85. doi: 10.1007/s00535-024-02163-2. Epub 2024 Oct 23.
4
Bibliometric analysis of the current status and trends on medical hyperspectral imaging.
Front Med (Lausanne). 2023 Sep 19;10:1235955. doi: 10.3389/fmed.2023.1235955. eCollection 2023.
5
High-speed scanless entire bandwidth mid-infrared chemical imaging.
Nat Commun. 2023 Jul 4;14(1):3929. doi: 10.1038/s41467-023-39628-6.
6
Visible near-infrared hyperspectral imaging and supervised classification for the detection of small intestinal necrosis tissue in vivo.
Biomed Opt Express. 2022 Oct 27;13(11):6061-6080. doi: 10.1364/BOE.470202. eCollection 2022 Nov 1.
7
Spectral Similarity Measures for In Vivo Human Tissue Discrimination Based on Hyperspectral Imaging.
Diagnostics (Basel). 2023 Jan 5;13(2):195. doi: 10.3390/diagnostics13020195.
8
Hyperspectral Microscopic Imaging for the Detection of Head and Neck Squamous Cell Carcinoma on Histologic Slides.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11603. doi: 10.1117/12.2581970. Epub 2021 Feb 15.

本文引用的文献

1
Melanoma and Melanocyte Identification from Hyperspectral Pathology Images Using Object-Based Multiscale Analysis.
Appl Spectrosc. 2018 Oct;72(10):1538-1547. doi: 10.1177/0003702818781352. Epub 2018 Jun 19.
2
Detecting brain tumor in pathological slides using hyperspectral imaging.
Biomed Opt Express. 2018 Jan 25;9(2):818-831. doi: 10.1364/BOE.9.000818. eCollection 2018 Feb 1.
3
Data-driven imaging of tissue inflammation using RGB-based hyperspectral reconstruction toward personal monitoring of dermatologic health.
Biomed Opt Express. 2017 Oct 26;8(11):5282-5296. doi: 10.1364/BOE.8.005282. eCollection 2017 Nov 1.
5
Automatic quantification of morphological features for hepatic trabeculae analysis in stained liver specimens.
J Med Imaging (Bellingham). 2016 Apr;3(2):027502. doi: 10.1117/1.JMI.3.2.027502. Epub 2016 Jun 3.
6
Can smartwatches replace smartphones for posture tracking?
Sensors (Basel). 2015 Oct 22;15(10):26783-800. doi: 10.3390/s151026783.
7
Computational hepatocellular carcinoma tumor grading based on cell nuclei classification.
J Med Imaging (Bellingham). 2014 Oct;1(3):034501. doi: 10.1117/1.JMI.1.3.034501. Epub 2014 Oct 9.
8
Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2015 May 13;6(6):2088-105. doi: 10.1364/BOE.6.002088. eCollection 2015 Jun 1.
9
Use of hyperspectral imaging technology to develop a diagnostic support system for gastric cancer.
J Biomed Opt. 2015 Jan;20(1):016017. doi: 10.1117/1.JBO.20.1.016017.
10
Toward automatic mitotic cell detection and segmentation in multispectral histopathological images.
IEEE J Biomed Health Inform. 2014 Mar;18(2):594-605. doi: 10.1109/JBHI.2013.2277837.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验