Ishikawa Masahiro, Okamoto Chisato, Shinoda Kazuma, Komagata Hideki, Iwamoto Chika, Ohuchida Kenoki, Hashizume Makoto, Shimizu Akinobu, Kobayashi Naoki
Saitama Medical University, Faculty of Health & Medical Care, Yamane-1397-1, Hidaka-shi, 350-1241, Japan.
Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
Biomed Opt Express. 2019 Aug 9;10(9):4568-4588. doi: 10.1364/BOE.10.004568. eCollection 2019 Sep 1.
Hyperspectral imaging (HSI) provides more detailed information than red-green-blue (RGB) imaging, and therefore has potential applications in computer-aided pathological diagnosis. This study aimed to develop a pattern recognition method based on HSI, called hyperspectral analysis of pathological slides based on stain spectrum (HAPSS), to detect cancers in hematoxylin and eosin-stained pathological slides of pancreatic tumors. The samples, comprising hyperspectral cubes of 420-750 nm, were harvested for HSI and tissue microarray (TMA) analysis. As a result of conducting HAPSS experiments with a support vector machine (SVM) classifier, we obtained maximal accuracy of 94%, a 14% improvement over the widely used RGB images. Thus, HAPSS is a suitable method to automatically detect tumors in pathological slides of the pancreas.
高光谱成像(HSI)比红绿蓝(RGB)成像提供更详细的信息,因此在计算机辅助病理诊断中具有潜在应用。本研究旨在开发一种基于HSI的模式识别方法,称为基于染色光谱的病理切片高光谱分析(HAPSS),以检测胰腺肿瘤苏木精和伊红染色病理切片中的癌症。采集了包含420 - 750 nm高光谱立方体的样本,用于HSI和组织微阵列(TMA)分析。通过使用支持向量机(SVM)分类器进行HAPSS实验,我们获得了94%的最大准确率,比广泛使用的RGB图像提高了14%。因此,HAPSS是一种适用于自动检测胰腺病理切片中肿瘤的方法。