University of Münster, Physikalisches Institut, Center for Nanotechnology, Heisenbergstr. 11, 48149, Münster, Germany.
Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany.
Nat Commun. 2023 Jul 4;14(1):3933. doi: 10.1038/s41467-023-39622-y.
Emerging photonic information processing systems require chip-level integration of controllable nanoscale light sources at telecommunication wavelengths. Currently, substantial challenges remain in the dynamic control of the sources, the low-loss integration into a photonic environment, and in the site-selective placement at desired positions on a chip. Here, we overcome these challenges using heterogeneous integration of electroluminescent (EL), semiconducting carbon nanotubes (sCNTs) into hybrid two dimensional - three dimensional (2D-3D) photonic circuits. We demonstrate enhanced spectral line shaping of the EL sCNT emission. By back-gating the sCNT-nanoemitter we achieve full electrical dynamic control of the EL sCNT emission with high on-off ratio and strong enhancement in the telecommunication band. Using nanographene as a low-loss material to electrically contact sCNT emitters directly within a photonic crystal cavity enables highly efficient EL coupling without compromising the optical quality of the cavity. Our versatile approach paves the way for controllable integrated photonic circuits.
新兴的光子信息处理系统需要在电信波长上实现可控制的纳米级光源的芯片级集成。目前,在光源的动态控制、低损耗集成到光子环境中以及在芯片上的期望位置进行选择性放置方面仍然存在重大挑战。在这里,我们使用电致发光 (EL) 和半导体碳纳米管 (sCNT) 的异质集成克服了这些挑战,将其集成到混合二维-三维 (2D-3D) 光子电路中。我们展示了 EL sCNT 发射的增强光谱线整形。通过背栅极 sCNT-纳米发射器,我们实现了 EL sCNT 发射的全电动态控制,具有高开关比和在电信波段的强增强。使用纳米石墨烯作为低损耗材料直接在光子晶体腔中电接触 sCNT 发射器,可实现高效的 EL 耦合,而不会影响腔的光学质量。我们的多功能方法为可控集成光子电路铺平了道路。