Advanced Functional Materials Laboratory, Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160014, India.
Department of Physics, Panjab University, Chandigarh, 160014, India.
Sci Rep. 2023 Jul 4;13(1):10769. doi: 10.1038/s41598-023-37754-1.
This study explores influence of charge transfer and X-ray absorption characteristics in aluminum (Al) and copper (Cu) co-doped zinc oxide (ZnO) nanostructures for perovskite solar cell electrodes. Sol-gel technique was employed to synthesize the nanostructures, and their optical and morphological properties were investigated. X-ray diffraction (XRD) analysis confirmed high crystallinity and also single-phase composition of all the samples, particularly up to 5% Al co-doping. Field emission scanning electron microscopy (FESEM) exhibited the formation of pseudo-hexagonal wurtzite nanostructure and the transition to nanorods at 5% Al co-doping. Diffuse reflectance spectroscopy indicated a reduction in the optical band gap of co-doped zinc oxide from 3.11 to 2.9 eV with increasing Al doping. Photoluminescence spectra (PL) exhibited a decrease in peak intensity, suggesting enhanced conductivity in ZnO, also confirmed from I-V measurements. Near-edge X-ray absorption fine structure (NEXAFS) analysis depicts that charge transfer from Al to oxygen (O) species enhanced the photosensing properties of the nanostructure, which was supported by FESEM micrographs and PL spectra. Furthermore, the study discovered that 5% Al co-doping significantly reduced the density of emission defects (deep-level) in Cu-ZnO nanostructure. These findings highlight the potential of Cu and Al co-doped ZnO materials for perovskite solar cell electrodes, as their improved optical and morphological properties resulting from charge transfer could enhance device performance. The investigation of charge transfer and X-ray absorption characteristics provides valuable insights into the underlying mechanisms and behaviors of the co-doped ZnO nanostructures. However, further research is required to delve into the intricate hybridization resulting from charge transfer and explore the broader impact of co-doping on other properties of the nanostructures, enabling a comprehensive understanding of their potential applications in perovskite solar cells.
这项研究探讨了在钙钛矿太阳能电池电极中,铝(Al)和铜(Cu)共掺杂氧化锌(ZnO)纳米结构中的电荷转移和 X 射线吸收特性的影响。采用溶胶-凝胶技术合成了纳米结构,并对其光学和形态特性进行了研究。X 射线衍射(XRD)分析证实了所有样品的高结晶度和单相组成,特别是高达 5%的 Al 共掺杂。场发射扫描电子显微镜(FESEM)显示了伪六方纤锌矿纳米结构的形成,并在 5%的 Al 共掺杂时转变为纳米棒。漫反射光谱表明,随着 Al 掺杂量的增加,共掺杂氧化锌的光学带隙从 3.11 减小到 2.9 eV。光致发光光谱(PL)表明,峰值强度降低,表明 ZnO 的电导率增强,这也从 I-V 测量中得到证实。近边 X 射线吸收精细结构(NEXAFS)分析表明,Al 向氧(O)物种的电荷转移增强了纳米结构的光传感性能,这得到了 FESEM 显微照片和 PL 光谱的支持。此外,研究发现,5%的 Al 共掺杂显著降低了 Cu-ZnO 纳米结构中发射缺陷(深能级)的密度。这些发现突出了 Cu 和 Al 共掺杂 ZnO 材料在钙钛矿太阳能电池电极中的潜力,因为它们的电荷转移导致的光学和形态性能的提高可以增强器件性能。对电荷转移和 X 射线吸收特性的研究提供了对共掺杂 ZnO 纳米结构的潜在机制和行为的有价值的见解。然而,需要进一步的研究来深入探讨电荷转移导致的复杂杂化,并探索共掺杂对纳米结构其他性能的更广泛影响,从而全面了解它们在钙钛矿太阳能电池中的潜在应用。
J Nanosci Nanotechnol. 2012-1
ChemistryOpen. 2024-12
Spectrochim Acta A Mol Biomol Spectrosc. 2015-9-5
Spectrochim Acta A Mol Biomol Spectrosc. 2013-1-19
Nanoscale Res Lett. 2014-5-1
Sci Rep. 2022-7-7
Nanomicro Lett. 2022-4-30
Appl Sci (Basel). 2020-7-28
Nanomaterials (Basel). 2019-7-25
Nanoscale Res Lett. 2018-5-12