文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于钙钛矿太阳能电池电极的铝和铜共掺杂氧化锌纳米结构中的电荷转移和 X 射线吸收研究。

Charge transfer and X-ray absorption investigations in aluminium and copper co-doped zinc oxide nanostructure for perovskite solar cell electrodes.

机构信息

Advanced Functional Materials Laboratory, Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160014, India.

Department of Physics, Panjab University, Chandigarh, 160014, India.

出版信息

Sci Rep. 2023 Jul 4;13(1):10769. doi: 10.1038/s41598-023-37754-1.


DOI:10.1038/s41598-023-37754-1
PMID:37402753
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10319901/
Abstract

This study explores influence of charge transfer and X-ray absorption characteristics in aluminum (Al) and copper (Cu) co-doped zinc oxide (ZnO) nanostructures for perovskite solar cell electrodes. Sol-gel technique was employed to synthesize the nanostructures, and their optical and morphological properties were investigated. X-ray diffraction (XRD) analysis confirmed high crystallinity and also single-phase composition of all the samples, particularly up to 5% Al co-doping. Field emission scanning electron microscopy (FESEM) exhibited the formation of pseudo-hexagonal wurtzite nanostructure and the transition to nanorods at 5% Al co-doping. Diffuse reflectance spectroscopy indicated a reduction in the optical band gap of co-doped zinc oxide from 3.11 to 2.9 eV with increasing Al doping. Photoluminescence spectra (PL) exhibited a decrease in peak intensity, suggesting enhanced conductivity in ZnO, also confirmed from I-V measurements. Near-edge X-ray absorption fine structure (NEXAFS) analysis depicts that charge transfer from Al to oxygen (O) species enhanced the photosensing properties of the nanostructure, which was supported by FESEM micrographs and PL spectra. Furthermore, the study discovered that 5% Al co-doping significantly reduced the density of emission defects (deep-level) in Cu-ZnO nanostructure. These findings highlight the potential of Cu and Al co-doped ZnO materials for perovskite solar cell electrodes, as their improved optical and morphological properties resulting from charge transfer could enhance device performance. The investigation of charge transfer and X-ray absorption characteristics provides valuable insights into the underlying mechanisms and behaviors of the co-doped ZnO nanostructures. However, further research is required to delve into the intricate hybridization resulting from charge transfer and explore the broader impact of co-doping on other properties of the nanostructures, enabling a comprehensive understanding of their potential applications in perovskite solar cells.

摘要

这项研究探讨了在钙钛矿太阳能电池电极中,铝(Al)和铜(Cu)共掺杂氧化锌(ZnO)纳米结构中的电荷转移和 X 射线吸收特性的影响。采用溶胶-凝胶技术合成了纳米结构,并对其光学和形态特性进行了研究。X 射线衍射(XRD)分析证实了所有样品的高结晶度和单相组成,特别是高达 5%的 Al 共掺杂。场发射扫描电子显微镜(FESEM)显示了伪六方纤锌矿纳米结构的形成,并在 5%的 Al 共掺杂时转变为纳米棒。漫反射光谱表明,随着 Al 掺杂量的增加,共掺杂氧化锌的光学带隙从 3.11 减小到 2.9 eV。光致发光光谱(PL)表明,峰值强度降低,表明 ZnO 的电导率增强,这也从 I-V 测量中得到证实。近边 X 射线吸收精细结构(NEXAFS)分析表明,Al 向氧(O)物种的电荷转移增强了纳米结构的光传感性能,这得到了 FESEM 显微照片和 PL 光谱的支持。此外,研究发现,5%的 Al 共掺杂显著降低了 Cu-ZnO 纳米结构中发射缺陷(深能级)的密度。这些发现突出了 Cu 和 Al 共掺杂 ZnO 材料在钙钛矿太阳能电池电极中的潜力,因为它们的电荷转移导致的光学和形态性能的提高可以增强器件性能。对电荷转移和 X 射线吸收特性的研究提供了对共掺杂 ZnO 纳米结构的潜在机制和行为的有价值的见解。然而,需要进一步的研究来深入探讨电荷转移导致的复杂杂化,并探索共掺杂对纳米结构其他性能的更广泛影响,从而全面了解它们在钙钛矿太阳能电池中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/2231f57defa9/41598_2023_37754_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/db8bdb07b86b/41598_2023_37754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/3d65171a1692/41598_2023_37754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/c1e48a1c685e/41598_2023_37754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/67c70d2d96f2/41598_2023_37754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/49884fa0e006/41598_2023_37754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/e004c6cd472e/41598_2023_37754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/c9b34c19f445/41598_2023_37754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/9081c8515095/41598_2023_37754_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/5a6f7d94a4fc/41598_2023_37754_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/95d2c55bf9be/41598_2023_37754_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/1b7ae1e0c8fb/41598_2023_37754_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/62cc6b8eaa38/41598_2023_37754_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/2231f57defa9/41598_2023_37754_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/db8bdb07b86b/41598_2023_37754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/3d65171a1692/41598_2023_37754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/c1e48a1c685e/41598_2023_37754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/67c70d2d96f2/41598_2023_37754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/49884fa0e006/41598_2023_37754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/e004c6cd472e/41598_2023_37754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/c9b34c19f445/41598_2023_37754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/9081c8515095/41598_2023_37754_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/5a6f7d94a4fc/41598_2023_37754_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/95d2c55bf9be/41598_2023_37754_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/1b7ae1e0c8fb/41598_2023_37754_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/62cc6b8eaa38/41598_2023_37754_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10319901/2231f57defa9/41598_2023_37754_Fig13_HTML.jpg

相似文献

[1]
Charge transfer and X-ray absorption investigations in aluminium and copper co-doped zinc oxide nanostructure for perovskite solar cell electrodes.

Sci Rep. 2023-7-4

[2]
Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

PLoS One. 2015-3-10

[3]
Dopant induced bandgap narrowing in Y-doped zinc oxide nanostructures.

J Nanosci Nanotechnol. 2012-1

[4]
Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis.

Dalton Trans. 2020-6-23

[5]
Cobalt-Doped ZnO Nanocomposits for Efficient Dye Degradation: Charge Transfer.

ChemistryOpen. 2024-12

[6]
Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-9-5

[7]
Investigation of Cu Doping, Morphology and Annealing Effects on Structural and Optical Properties of ZnO:Dy Nanostructures.

J Fluoresc. 2016-5

[8]
Fabrication and characterization of a diluted magnetic semiconducting TM co-doped Al:ZnO (TM=Co, Ni) thin films by sol-gel spin coating method.

Spectrochim Acta A Mol Biomol Spectrosc. 2013-1-19

[9]
Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration.

Nanoscale Res Lett. 2014-5-1

[10]
The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures.

RSC Adv. 2022-4-19

引用本文的文献

[1]
Enhanced electrochemical performance of Ce-MOF/h-CeO composites for high-capacitance energy storage applications.

RSC Adv. 2024-6-3

[2]
Humidity sensing using ZnNaCuTiO spinel nanostructures.

Sci Rep. 2024-1-4

本文引用的文献

[1]
Photo-supercapacitors based on nanoscaled ZnO.

Sci Rep. 2022-7-7

[2]
Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells.

Nanomicro Lett. 2022-4-30

[3]
Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine.

Appl Sci (Basel). 2020-7-28

[4]
Effect of Ni doping on structure, morphology and opto-transport properties of spray pyrolised ZnO nano-fiber.

Heliyon. 2020-3-14

[5]
High-Performance Flexible Ultraviolet Photodetectors with Ni/Cu-Codoped ZnO Nanorods Grown on PET Substrates.

Nanomaterials (Basel). 2019-7-25

[6]
Enhanced Efficiency of Carbon-Based Mesoscopic Perovskite Solar Cells through a Tungsten Oxide Nanoparticle Additive in the Carbon Electrode.

Sci Rep. 2019-6-19

[7]
Structural and electronic investigation of ZnO nanostructures synthesized under different environments.

Heliyon. 2018-4-9

[8]
Optical Properties of Al-Doped ZnO Films in the Infrared Region and Their Absorption Applications.

Nanoscale Res Lett. 2018-5-12

[9]
Emerging Novel Metal Electrodes for Photovoltaic Applications.

Small. 2018-4

[10]
Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method.

Sci Rep. 2017-11-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索