Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
BMC Cancer. 2023 Jul 4;23(1):622. doi: 10.1186/s12885-023-11053-4.
Lymph node metastasis (LNM) is an important factor affecting endometrial cancer (EC) prognosis. Current controversy exists as to how to accurately assess the risk of lymphatic metastasis. Metabolic syndrome has been considered a risk factor for endometrial cancer, yet its effect on LNM remains elusive. We developed a nomogram integrating metabolic syndrome indicators with other crucial variables to predict lymph node metastasis in endometrial cancer.
This study is based on patients diagnosed with EC in Peking University People's Hospital between January 2004 and December 2020. A total of 1076 patients diagnosed with EC and who underwent staging surgery were divided into training and validation cohorts according to the ratio of 2:1. Univariate and multivariate logistic regression analyses were used to determine the significant predictive factors.
The prediction nomogram included MSR, positive peritoneal cytology, lymph vascular space invasion, endometrioid histological type, tumor size > = 2 cm, myometrial invasion > = 50%, cervical stromal invasion, and tumor grade. In the training group, the area under the curve (AUC) of the nomogram and Mayo criteria were 0.85 (95% CI: 0.81-0.90) and 0.77 (95% CI: 0.77-0.83), respectively (P < 0.01). In the validation group (N = 359), the AUC was 0.87 (95% CI: 0.82-0.93) and 0.80 (95% CI: 0.74-0.87) for the nomogram and the Mayo criteria, respectively (P = 0.01). Calibration plots revealed the satisfactory performance of the nomogram. Decision curve analysis showed a positive net benefit of this nomogram, which indicated clinical value.
This model may promote risk stratification and individualized treatment, thus improving the prognosis.
淋巴结转移(LNM)是影响子宫内膜癌(EC)预后的重要因素。目前对于如何准确评估淋巴转移风险仍存在争议。代谢综合征已被认为是子宫内膜癌的危险因素,但它对 LNM 的影响仍不清楚。我们开发了一个列线图,将代谢综合征指标与其他关键变量相结合,以预测子宫内膜癌的淋巴结转移。
本研究基于 2004 年 1 月至 2020 年 12 月在北京大学人民医院诊断为 EC 的患者。根据 2:1 的比例,将 1076 名诊断为 EC 并接受分期手术的患者分为训练和验证队列。使用单因素和多因素逻辑回归分析确定显著预测因素。
预测列线图包括 MSR、阳性腹膜细胞学、淋巴血管空间侵犯、子宫内膜组织学类型、肿瘤大小≥2cm、肌层浸润≥50%、宫颈间质浸润和肿瘤分级。在训练组中,列线图和 Mayo 标准的曲线下面积(AUC)分别为 0.85(95%CI:0.81-0.90)和 0.77(95%CI:0.77-0.83)(P<0.01)。在验证组(N=359)中,列线图和 Mayo 标准的 AUC 分别为 0.87(95%CI:0.82-0.93)和 0.80(95%CI:0.74-0.87)(P=0.01)。校准图显示列线图表现良好。决策曲线分析显示该列线图具有正的净获益,表明具有临床价值。
该模型可能有助于风险分层和个体化治疗,从而改善预后。