Suppr超能文献

识别用于电子预测的粗粒度表示。

Identifying Coarse-Grained Representations for Electronic Predictions.

作者信息

Wang Chun-I, Maier J Charlie, Jackson Nicholas E

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Avenue, Urbana, Illinois 61801, United States.

出版信息

J Chem Theory Comput. 2023 Aug 8;19(15):4982-4990. doi: 10.1021/acs.jctc.3c00466. Epub 2023 Jul 5.

Abstract

Coarse-grained (CG) simulations are an important computational tool in chemistry and materials science. Recently, systematic "bottom-up" CG models have been introduced to capture electronic structure variations of molecules and polymers at the CG resolution. However, the performance of these models is limited by the ability to select reduced representations that preserve electronic structure information, which remains a challenge. We propose two methods for (i) identifying important electronically coupled atomic degrees of freedom and (ii) scoring the efficacy of CG representations used in conjunction with CG electronic predictions. The first method is a physically motivated approach that incorporates nuclear vibrations and electronic structure derived from simple quantum chemical calculations. We complement this physically motivated approach with a machine learning technique based on the marginal contribution of nuclear degrees of freedom to electronic prediction accuracy using an equivariant graph neural network. By integrating these two approaches, we can both identify critical electronically coupled atomic coordinates and score the efficacy of arbitrary CG representations for making electronic predictions. We leverage this capability to make a connection between optimized CG representations and the future potential for "bottom-up" development of simplified model Hamiltonians incorporating nonlinear vibrational modes.

摘要

粗粒度(CG)模拟是化学和材料科学中的一种重要计算工具。最近,已经引入了系统的“自下而上”CG模型,以在CG分辨率下捕捉分子和聚合物的电子结构变化。然而,这些模型的性能受到选择能够保留电子结构信息的简化表示能力的限制,这仍然是一个挑战。我们提出了两种方法,一种用于(i)识别重要的电子耦合原子自由度,另一种用于(ii)评估与CG电子预测结合使用的CG表示的有效性。第一种方法是一种基于物理的方法,它结合了核振动和从简单量子化学计算得出的电子结构。我们用一种基于核自由度对电子预测准确性的边际贡献的机器学习技术,通过等变图神经网络,对这种基于物理的方法进行补充。通过整合这两种方法,我们既可以识别关键的电子耦合原子坐标,又可以评估任意CG表示进行电子预测的有效性。我们利用这种能力在优化的CG表示与纳入非线性振动模式的简化模型哈密顿量的“自下而上”发展的未来潜力之间建立联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验