Wang Chun-I, Maier J Charlie, Jackson Nicholas E
Department of Chemistry, University of Illinois at Urbana-Champaign 505 S Mathews Avenue Urbana Illinois 61801 USA
Chem Sci. 2024 May 2;15(22):8390-8403. doi: 10.1039/d3sc06749a. eCollection 2024 Jun 5.
Understanding the relationship between multiscale morphology and electronic structure is a grand challenge for semiconducting soft materials. Computational studies aimed at characterizing these relationships require the complex integration of quantum-chemical (QC) calculations, all-atom and coarse-grained (CG) molecular dynamics simulations, and back-mapping approaches. However, these methods pose substantial computational challenges that limit their application to the requisite length scales of soft material morphologies. Here, we demonstrate the bottom-up electronic coarse-graining (ECG) of morphology-dependent electronic structure in the liquid-crystal-forming semiconductor, 2-(4-methoxyphenyl)-7-octyl-benzothienobenzothiophene (BTBT). ECG is applied to construct density functional theory (DFT)-accurate valence band Hamiltonians of the isotropic and smectic liquid crystal (LC) phases using only the CG representation of BTBT. By bypassing the atomistic resolution and its prohibitive computational costs, ECG enables the first calculations of the morphology dependence of the electronic structure of charge carriers across LC phases at the ∼20 nm length scale, with robust statistical sampling. Kinetic Monte Carlo (kMC) simulations reveal a strong morphology dependence on zero-field charge mobility among different LC phases as well as the presence of two-molecule charge carriers that act as traps and hinder charge transport. We leverage these results to further evaluate the feasibility of developing mesoscopic, field-based ECG models in future works. The fully CG approach to electronic property predictions in LC semiconductors opens a new computational direction for designing electronic processes in soft materials at their characteristic length scales.
理解多尺度形态与电子结构之间的关系是半导体软材料面临的一项重大挑战。旨在表征这些关系的计算研究需要将量子化学(QC)计算、全原子和粗粒度(CG)分子动力学模拟以及反向映射方法进行复杂整合。然而,这些方法带来了巨大的计算挑战,限制了它们在软材料形态所需长度尺度上的应用。在此,我们展示了在形成液晶的半导体2-(4-甲氧基苯基)-7-辛基-苯并噻吩并苯并噻吩(BTBT)中,形态依赖电子结构的自下而上电子粗粒化(ECG)。ECG仅使用BTBT的CG表示来构建各向同性和近晶液晶(LC)相的密度泛函理论(DFT)精确价带哈密顿量。通过绕过原子分辨率及其高昂的计算成本,ECG能够在约20纳米长度尺度上首次对跨LC相的电荷载流子电子结构的形态依赖性进行计算,并具有稳健的统计采样。动力学蒙特卡罗(kMC)模拟揭示了不同LC相之间零场电荷迁移率对形态的强烈依赖性,以及存在作为陷阱并阻碍电荷传输的双分子电荷载流子。我们利用这些结果进一步评估在未来工作中开发介观、基于场的ECG模型的可行性。在LC半导体中预测电子性质的完全CG方法为在软材料的特征长度尺度上设计电子过程开辟了一个新的计算方向。