Suppr超能文献

具有结构可塑性和缺陷耐受性的非晶态Zn-In-Sn-O薄膜晶体管的原位辐射硬度研究

In Situ Radiation Hardness Study of Amorphous Zn-In-Sn-O Thin-Film Transistors with Structural Plasticity and Defect Tolerance.

作者信息

Ho Dongil, Choi Sunwoo, Kang Hyunwoo, Park Byungkyu, Le Minh Nhut, Park Sung Kyu, Kim Myung-Gil, Kim Choongik, Facchetti Antonio

机构信息

Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbom-ro, Mapo-gu, Seoul 04107, Republic of Korea.

School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2023 Jul 19;15(28):33751-33762. doi: 10.1021/acsami.3c06555. Epub 2023 Jul 5.

Abstract

Solution-processed metal-oxide thin-film transistors (TFTs) with different metal compositions are investigated for ex situ and in situ radiation hardness experiments against ionizing radiation exposure. The synergetic combination of structural plasticity of Zn, defect tolerance of Sn, and high electron mobility of In identifies amorphous zinc-indium-tin oxide (Zn-In-Sn-O or ZITO) as an optimal radiation-resistant channel layer of TFTs. The ZITO with an elemental blending ratio of 4:1:1 for Zn/In/Sn exhibits superior ex situ radiation resistance compared to In-Ga-Zn-O, Ga-Sn-O, Ga-In-Sn-O, and Ga-Sn-Zn-O. Based on the in situ irradiation results, where a negative threshold voltage shifts and a mobility increase as well as both off current and leakage current increase are observed, three factors are proposed for the degradation mechanisms: (i) increase of channel conductivity, (ii) interface-trapped and dielectric-trapped charge buildup, and (iii) trap-assisted tunneling in the dielectric. Finally, in situ radiation-hard oxide-based TFTs are demonstrated by employing a radiation-resistant ZITO channel, a thin dielectric (50 nm SiO), and a passivation layer (PCBM for ambient exposure), which exhibit excellent stability with an electron mobility of ∼10 cm/V s and aΔ of <3 V under real-time (15 kGy/h) gamma-ray irradiation in an ambient atmosphere.

摘要

研究了具有不同金属成分的溶液处理金属氧化物薄膜晶体管(TFT),用于针对电离辐射暴露的非原位和原位辐射硬度实验。锌的结构可塑性、锡的缺陷耐受性和铟的高电子迁移率的协同组合,确定非晶态锌铟锡氧化物(Zn-In-Sn-O或ZITO)为TFT的最佳抗辐射沟道层。锌/铟/锡元素混合比为4:1:1的ZITO与铟镓锌氧化物、镓锡氧化物、镓铟锡氧化物和镓锡锌氧化物相比,具有优异的非原位抗辐射性能。基于原位辐照结果,观察到阈值电压负向漂移、迁移率增加以及关态电流和漏电流均增加,针对退化机制提出了三个因素:(i)沟道电导率增加,(ii)界面陷阱和介质陷阱电荷积累,以及(iii)介质中的陷阱辅助隧穿。最后,通过采用抗辐射的ZITO沟道、薄介质(50 nm SiO)和钝化层(用于环境暴露的PCBM),展示了原位辐射硬化氧化物基TFT,在环境大气中实时(15 kGy/h)伽马射线辐照下,其表现出优异的稳定性,电子迁移率约为10 cm²/V s,阈值电压变化<3 V。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验