Chen Jiawei, Zhou Jie, Li Qing, Li Hanghang, Xia Yunpeng, Jackson Robert, Sun Gang, Zhou Guodong, Deakin Greg, Jiang Dong, Zhou Ji
State Key Laboratory of Crop Genetics & Germplasm Enhancement, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
College of Engineering, Nanjing Agricultural University, Nanjing, China.
Front Plant Sci. 2023 Jun 19;14:1219983. doi: 10.3389/fpls.2023.1219983. eCollection 2023.
As one of the most consumed stable foods around the world, wheat plays a crucial role in ensuring global food security. The ability to quantify key yield components under complex field conditions can help breeders and researchers assess wheat's yield performance effectively. Nevertheless, it is still challenging to conduct large-scale phenotyping to analyse canopy-level wheat spikes and relevant performance traits, in the field and in an automated manner. Here, we present CropQuant-Air, an AI-powered software system that combines state-of-the-art deep learning (DL) models and image processing algorithms to enable the detection of wheat spikes and phenotypic analysis using wheat canopy images acquired by low-cost drones. The system includes the YOLACT-Plot model for plot segmentation, an optimised YOLOv7 model for quantifying the spike number per m (SNpM) trait, and performance-related trait analysis using spectral and texture features at the canopy level. Besides using our labelled dataset for model training, we also employed the Global Wheat Head Detection dataset to incorporate varietal features into the DL models, facilitating us to perform reliable yield-based analysis from hundreds of varieties selected from main wheat production regions in China. Finally, we employed the SNpM and performance traits to develop a yield classification model using the Extreme Gradient Boosting (XGBoost) ensemble and obtained significant positive correlations between the computational analysis results and manual scoring, indicating the reliability of CropQuant-Air. To ensure that our work could reach wider researchers, we created a graphical user interface for CropQuant-Air, so that non-expert users could readily use our work. We believe that our work represents valuable advances in yield-based field phenotyping and phenotypic analysis, providing useful and reliable toolkits to enable breeders, researchers, growers, and farmers to assess crop-yield performance in a cost-effective approach.
作为全球消费最多的主粮之一,小麦在确保全球粮食安全方面发挥着关键作用。在复杂田间条件下对关键产量构成要素进行量化的能力,有助于育种者和研究人员有效评估小麦的产量表现。然而,在田间以自动化方式进行大规模表型分析以解析冠层水平的小麦穗及相关性能性状,仍然具有挑战性。在此,我们展示了CropQuant-Air,这是一个由人工智能驱动的软件系统,它结合了最先进的深度学习(DL)模型和图像处理算法,能够利用低成本无人机获取的小麦冠层图像检测小麦穗并进行表型分析。该系统包括用于地块分割的YOLACT-Plot模型、用于量化每平方米穗数(SNpM)性状的优化YOLOv7模型,以及在冠层水平使用光谱和纹理特征进行性能相关性状分析。除了使用我们标记的数据集进行模型训练外,我们还采用了全球小麦穗检测数据集将品种特征纳入DL模型,便于我们对从中国主要小麦产区选出的数百个品种进行基于产量的可靠分析。最后,我们利用SNpM和性能性状,使用极端梯度提升(XGBoost)集成开发了一个产量分类模型,并在计算分析结果与人工评分之间获得了显著的正相关,表明了CropQuant-Air的可靠性。为确保我们的工作能被更广泛的研究人员所使用,我们为CropQuant-Air创建了一个图形用户界面,以便非专业用户能够轻松使用我们的工作。我们相信,我们的工作代表了基于产量的田间表型分析和表型分析方面的宝贵进展,提供了有用且可靠的工具包,使育种者、研究人员、种植者和农民能够以经济高效的方式评估作物产量表现。