Suppr超能文献

GSP-AI:一个利用三边无人机图像和气象数据识别小麦关键生长阶段及营养生长向生殖生长转变的人工智能平台。

GSP-AI: An AI-Powered Platform for Identifying Key Growth Stages and the Vegetative-to-Reproductive Transition in Wheat Using Trilateral Drone Imagery and Meteorological Data.

作者信息

Shen Liyan, Ding Guohui, Jackson Robert, Ali Mujahid, Liu Shuchen, Mitchell Arthur, Shi Yeyin, Lu Xuqi, Dai Jie, Deakin Greg, Frels Katherine, Cen Haiyan, Ge Yu-Feng, Zhou Ji

机构信息

College of Engineering, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Centre, Nanjing Agricultural University, Nanjing 210095, China.

Data Sciences, National Institute of Agricultural Botany (NIAB), Crop Science Centre (CSC), Cambridge CB3 0LE, UK.

出版信息

Plant Phenomics. 2024 Oct 9;6:0255. doi: 10.34133/plantphenomics.0255. eCollection 2024.

Abstract

Wheat () is one of the most important staple crops worldwide. To ensure its global supply, the timing and duration of its growth cycle needs to be closely monitored in the field so that necessary crop management activities can be arranged in a timely manner. Also, breeders and plant researchers need to evaluate growth stages (GSs) for tens of thousands of genotypes at the plot level, at different sites and across multiple seasons. These indicate the importance of providing a reliable and scalable toolkit to address the challenge so that the plot-level assessment of GS can be successfully conducted for different objectives in plant research. Here, we present a multimodal deep learning model called GSP-AI, capable of identifying key GSs and predicting the vegetative-to-reproductive transition (i.e., flowering days) in wheat based on drone-collected canopy images and multiseasonal climatic datasets. In the study, we first established an open Wheat Growth Stage Prediction (WGSP) dataset, consisting of 70,410 annotated images collected from 54 varieties cultivated in China, 109 in the United Kingdom, and 100 in the United States together with key climatic factors. Then, we built an effective learning architecture based on Res2Net and long short-term memory (LSTM) to learn canopy-level vision features and patterns of climatic changes between 2018 and 2021 growing seasons. Utilizing the model, we achieved an overall accuracy of 91.2% in identifying key GS and an average root mean square error (RMSE) of 5.6 d for forecasting the flowering days compared with manual scoring. We further tested and improved the GSP-AI model with high-resolution smartphone images collected in the 2021/2022 season in China, through which the accuracy of the model was enhanced to 93.4% for GS and RMSE reduced to 4.7 d for the flowering prediction. As a result, we believe that our work demonstrates a valuable advance to inform breeders and growers regarding the timing and duration of key plant growth and development phases at the plot level, facilitating them to conduct more effective crop selection and make agronomic decisions under complicated field conditions for wheat improvement.

摘要

小麦()是全球最重要的主食作物之一。为确保其全球供应,需要在田间密切监测其生长周期的时间和持续时间,以便及时安排必要的作物管理活动。此外,育种者和植物研究人员需要在地块层面、不同地点和多个季节对成千上万的基因型进行生长阶段(GSs)评估。这些都表明提供一个可靠且可扩展的工具包来应对这一挑战的重要性,以便能够针对植物研究中的不同目标成功进行地块层面的GS评估。在此,我们提出了一种名为GSP-AI的多模态深度学习模型,该模型能够基于无人机采集的冠层图像和多季节气候数据集识别关键生长阶段,并预测小麦从营养生长到生殖生长的转变(即开花天数)。在这项研究中,我们首先建立了一个开放的小麦生长阶段预测(WGSP)数据集,该数据集由从中国种植的54个品种、英国的109个品种和美国的100个品种收集的70410张带注释图像以及关键气候因素组成。然后,我们基于Res2Net和长短期记忆(LSTM)构建了一个有效的学习架构,以学习2018年至2021年生长季节冠层水平的视觉特征和气候变化模式。利用该模型,与人工评分相比,我们在识别关键生长阶段方面的总体准确率达到了91.2%,预测开花天数的平均均方根误差(RMSE)为5.6天。我们进一步使用2021/2022季节在中国采集的高分辨率智能手机图像对GSP-AI模型进行了测试和改进,通过该测试,模型对生长阶段的准确率提高到了93.4%,开花预测的RMSE降低到了4.7天。因此,我们相信我们的工作在告知育种者和种植者地块层面关键植物生长和发育阶段的时间和持续时间方面取得了有价值的进展,有助于他们在复杂的田间条件下进行更有效的作物选择并做出农艺决策,以改良小麦。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2814/11462051/fc7c11b54293/plantphenomics.0255.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验