Wang Zhicheng, Chen Xing, Wu Dajun, Zhang Tao, Zhang Guikai, Chu Shengqi, Qian Bin, Tao Shi
School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China.
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
J Colloid Interface Sci. 2023 Nov 15;650(Pt A):247-256. doi: 10.1016/j.jcis.2023.06.192. Epub 2023 Jun 28.
The low-rate capability and fast capacity decaying of the molybdenum dioxide anode material have been a bottleneck for lithium-ion batteries (LIBs) due to low carrier transport, drastic volume expansion and inferior reversibility. Furthermore, the lithium-storage mechanism is still controversial at present. Herein, we fabricate a new kind of MoO nanoparticles with nitrogen-doped multiwalled carbon nanotubes (MoO/N-MCNTs) as anode for LIBs. The strong chemical bonding (MoOC) endows MoO/N-MCNTs a strong metal oxide-support interaction (SMSI), rendering electron/ion transfer and facilitate significant Li intercalation pseudocapacitance, which is evidenced by both theoretical computation and detailed experiments. Thus, the MoO/N-MCNTs exhibits high-rate performance (523.7 mAh/g at 3000 mA g) and long durability (507.8 mAh/g at 1000 mA g after 500 cycles). Furthermore, pouch-type full cell composed of MoO/N-MCNTs anodes and commercial LiNiCoMnO (NCM622) cathodes demonstrate impressive rate performance and cyclic life, which displays an unparalleled energy density of 553.0 Wh kg. Ex-situ X-ray absorption spectroscopy (XAS) indicates the enhanced lithium-storage mechanism is originated from a partially irreversible phase transition from LiMoO to LiMoO via delithiation. This work not only provides fresh insights into the enhanced lithium-storage mechanism but also proposes new design principles toward efficient LIBs.
由于载流子传输率低、体积急剧膨胀和可逆性差,二氧化钼负极材料的低倍率性能和快速容量衰减一直是锂离子电池(LIBs)的瓶颈。此外,目前锂存储机制仍存在争议。在此,我们制备了一种新型的以氮掺杂多壁碳纳米管(MoO/N-MCNTs)为LIBs负极的MoO纳米颗粒。强化学键(MoOC)赋予MoO/N-MCNTs强大的金属氧化物-载体相互作用(SMSI),促进电子/离子转移并有利于显著的锂嵌入赝电容,这在理论计算和详细实验中均得到证实。因此,MoO/N-MCNTs表现出高倍率性能(在3000 mA g时为523.7 mAh/g)和长耐久性(在1000 mA g下循环500次后为507.8 mAh/g)。此外,由MoO/N-MCNTs负极和商用LiNiCoMnO(NCM622)正极组成的软包型全电池表现出令人印象深刻的倍率性能和循环寿命,其能量密度达到553.0 Wh kg,无与伦比。非原位X射线吸收光谱(XAS)表明,增强的锂存储机制源于通过脱锂从LiMoO到LiMoO的部分不可逆相变。这项工作不仅为增强的锂存储机制提供了新的见解,还提出了高效LIBs的新设计原则。