Suppr超能文献

多组学融合预测药物敏感性揭示了泛癌中药物反应的异质性。

The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.

机构信息

School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.

Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, People's Republic of China.

出版信息

Comput Biol Med. 2023 Sep;163:107220. doi: 10.1016/j.compbiomed.2023.107220. Epub 2023 Jul 1.

Abstract

Cancer drug response prediction based on genomic information plays a crucial role in modern pharmacogenomics, enabling individualized therapy. Given the expensive and complexity of biological experiments, computational methods serve as effective tools in predicting cancer drug sensitivity. In this study, we proposed a novel method called Multi-Omics Integrated Collective Variational Autoencoders (MOICVAE), which leverages integrated omics knowledge, including genomic and transcriptomic data, to fill in missing cancer-drug associations and enhance drug sensitivity prediction. Our method employs an encoder-decoder network to learn latent feature representations from cell lines. These learned feature vectors are then fed into a collective variational autoencoder network to train an association matrix. We evaluated MOICVAE on the GDSC and CCLE benchmark datasets using 10-fold cross-validation and achieved impressive AUCs of 0.856 and 0.808, respectively, outperforming state-of-the-art methods. Furthermore, on the TCGA dataset, consisting of 25 drugs across 7 cancer types, MOICVAE exhibited an average AUC of 0.91 in predicting drug sensitivity. Additionally, significant differences were observed in survival, tumor inflammatory assessment, and tumor microenvironment between the predicted drug-sensitive and drug-resistant groups. These results are consistent with predictions made on the METABRIC dataset. Moreover, we discovered that fusing omics data based on mRNA and CNV (copy number variations) yielded superior results in drug sensitivity prediction. MOICVAE not only achieved higher accuracy in drug sensitivity prediction but also provided additional value for combining immunotherapy with chemotherapy, offering patients with more precise treatment options. The code and dataset for MOICVAE are freely available at https://github.com/wanggnoc/MOICVAE.

摘要

基于基因组信息的癌症药物反应预测在现代药物基因组学中起着至关重要的作用,能够实现个体化治疗。鉴于生物实验的昂贵和复杂性,计算方法成为预测癌症药物敏感性的有效工具。在这项研究中,我们提出了一种名为多组学集成集体变分自动编码器(MOICVAE)的新方法,该方法利用包括基因组和转录组数据在内的综合组学知识来填补癌症-药物关联的缺失,并增强药物敏感性预测。我们的方法使用编码器-解码器网络从细胞系中学习潜在的特征表示。这些学习到的特征向量然后被输入到一个集体变分自动编码器网络中,以训练关联矩阵。我们在 GDSC 和 CCLE 基准数据集上使用 10 折交叉验证对 MOICVAE 进行了评估,分别获得了 0.856 和 0.808 的令人印象深刻的 AUC,优于最先进的方法。此外,在包含 7 种癌症类型的 25 种药物的 TCGA 数据集上,MOICVAE 在预测药物敏感性方面的平均 AUC 为 0.91。此外,在预测的药物敏感和耐药组之间观察到了生存、肿瘤炎症评估和肿瘤微环境的显著差异。这些结果与在 METABRIC 数据集上的预测一致。此外,我们发现基于 mRNA 和 CNV(拷贝数变异)融合组学数据可在药物敏感性预测方面获得更好的结果。MOICVAE 不仅在药物敏感性预测方面具有更高的准确性,而且还为免疫治疗与化疗相结合提供了额外的价值,为患者提供了更精确的治疗选择。MOICVAE 的代码和数据集可在 https://github.com/wanggnoc/MOICVAE 上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验