Suppr超能文献

生成式人工智能在个性化医疗中的作用:一项系统综述。

Role of Generative Artificial Intelligence in Personalized Medicine: A Systematic Review.

作者信息

Mishra Aashish, Majumder Anirban, Kommineni Dheeraj, Anna Joseph Chrishanti, Chowdhury Tanay, Anumula Sathish Krishna

机构信息

Computer Science and Information Technology, Eastern Kentucky University, Richmond, USA.

Research, Amazon Science Education, Scottsdale, USA.

出版信息

Cureus. 2025 Apr 15;17(4):e82310. doi: 10.7759/cureus.82310. eCollection 2025 Apr.

Abstract

Precision medicine presents challenges in data collection, cost, and privacy as it tailors treatments to each patient's unique genetic and clinical profile. With its ability to produce realistic and confidential patient data, generative artificial intelligence (AI) offers a promising avenue that could revolutionize patient-centric healthcare. This systematic review aims to assess the role of generative AI in personalized medicine. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched PubMed, Web of Science, Scopus, CINAHL, and Google Scholar, identifying 549 studies. After removing duplicates and applying eligibility criteria, 27 studies were found relevant and were included in this systematic review. Generative adversarial networks (GANs) were the most commonly used models (16 studies), followed by variational autoencoders (VAEs; seven studies). These models were primarily applied to drug response prediction, treatment effect estimation, biomarker discovery, and patient stratification. Generative AI models have shown significant promise in revolutionizing personalized medicine by enabling precise treatment predictions and patient-specific therapeutic insights. Despite their potential, challenges related to model validation, interpretability, and bias remain. Future research should prioritize large-scale validation studies using diverse datasets to enhance the clinical applicability and reliability of these AI-driven approaches.

摘要

精准医学在数据收集、成本和隐私方面存在挑战,因为它是根据每个患者独特的基因和临床特征来定制治疗方案的。生成式人工智能(AI)能够生成逼真且保密的患者数据,为以患者为中心的医疗保健带来了变革的希望。本系统评价旨在评估生成式AI在个性化医疗中的作用。按照系统评价和Meta分析的首选报告项目(PRISMA)指南,我们检索了PubMed、科学网、Scopus、护理学与健康领域数据库(CINAHL)和谷歌学术,共识别出549项研究。在去除重复项并应用纳入标准后,发现27项研究相关,并纳入了本系统评价。生成对抗网络(GANs)是最常用的模型(16项研究),其次是变分自编码器(VAE;7项研究)。这些模型主要应用于药物反应预测、治疗效果估计、生物标志物发现和患者分层。生成式AI模型通过实现精确的治疗预测和针对患者的治疗见解,在变革个性化医疗方面展现出了巨大的前景。尽管它们具有潜力,但与模型验证、可解释性和偏差相关的挑战依然存在。未来的研究应优先开展使用多样数据集的大规模验证研究,以提高这些AI驱动方法的临床适用性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7a2/12081128/6a2938330f24/cureus-0017-00000082310-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验