Suppr超能文献

转移金属:微生物如何将金属辅因子递送至金属蛋白。

Moving metals: How microbes deliver metal cofactors to metalloproteins.

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

Mol Microbiol. 2023 Oct;120(4):547-554. doi: 10.1111/mmi.15117. Epub 2023 Jul 5.

Abstract

First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.

摘要

第一行 d 族金属离子是许多必需酶的重要辅助因子,因此是所有生命形式必需的营养物质。尽管有这种需求,但过多的游离过渡金属是有毒的。游离金属离子参与产生有害的活性氧物种,并使金属蛋白错误配位,使酶失去催化活性。因此,细菌需要有系统来确保金属蛋白正确地与同源金属离子结合,以维持蛋白质功能,同时避免金属介导的细胞毒性。在这篇观点文章中,我们总结了目前对细菌金属中心成熟的机制理解,特别强调了金属伴侣蛋白;这是一组专门的蛋白质,既能防止金属离子发生意外反应,又能将其分配给同源靶金属蛋白。我们强调了该领域的几项最新进展,这些进展表明在细菌蛋白中,新的蛋白质类别参与了金属离子的分布,并推测了细菌金属生物学领域的未来。

相似文献

1
Moving metals: How microbes deliver metal cofactors to metalloproteins.
Mol Microbiol. 2023 Oct;120(4):547-554. doi: 10.1111/mmi.15117. Epub 2023 Jul 5.
2
Selective recognition of metal ions by metalloregulatory proteins.
Curr Opin Chem Biol. 2008 Apr;12(2):214-21. doi: 10.1016/j.cbpa.2007.12.010. Epub 2008 Mar 4.
3
Metal Ion availability in mitochondria.
Biometals. 2007 Jun;20(3-4):675-82. doi: 10.1007/s10534-006-9052-9. Epub 2007 Jan 16.
4
Bacterial sensors define intracellular free energies for correct enzyme metalation.
Nat Chem Biol. 2019 Mar;15(3):241-249. doi: 10.1038/s41589-018-0211-4. Epub 2019 Jan 28.
5
The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity.
Adv Microb Physiol. 2017;70:315-379. doi: 10.1016/bs.ampbs.2017.01.003. Epub 2017 Feb 13.
6
Metalloimmunology: The metal ion-controlled immunity.
Adv Immunol. 2020;145:187-241. doi: 10.1016/bs.ai.2019.11.007. Epub 2019 Dec 9.
7
Metal site occupancy and allosteric switching in bacterial metal sensor proteins.
Arch Biochem Biophys. 2012 Mar 15;519(2):210-22. doi: 10.1016/j.abb.2011.11.021. Epub 2011 Dec 8.
8
Metalloregulatory proteins: metal selectivity and allosteric switching.
Biophys Chem. 2011 Jul;156(2-3):103-14. doi: 10.1016/j.bpc.2011.03.010. Epub 2011 Apr 5.
10
How do bacterial cells ensure that metalloproteins get the correct metal?
Nat Rev Microbiol. 2009 Jan;7(1):25-35. doi: 10.1038/nrmicro2057.

引用本文的文献

1
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
2
Cholesterol metabolism and intrabacterial potassium homeostasis are intrinsically related in Mycobacterium tuberculosis.
PLoS Pathog. 2025 May 22;21(5):e1013207. doi: 10.1371/journal.ppat.1013207. eCollection 2025 May.
3
Compatibility of intracellular binding: Evolutionary design principles for metal sensors.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2427151122. doi: 10.1073/pnas.2427151122. Epub 2025 Apr 30.
4
Cholesterol metabolism and intrabacterial potassium homeostasis are intrinsically related in .
bioRxiv. 2024 Nov 11:2024.11.10.622811. doi: 10.1101/2024.11.10.622811.
6
Comparative genomic analysis of nickel homeostasis in cable bacteria.
BMC Genomics. 2024 Jul 15;25(1):692. doi: 10.1186/s12864-024-10594-7.
7
The metal cofactor: stationary or mobile?
Appl Microbiol Biotechnol. 2024 Jun 24;108(1):391. doi: 10.1007/s00253-024-13206-2.
8
TerC proteins function during protein secretion to metalate exoenzymes.
Nat Commun. 2023 Oct 4;14(1):6186. doi: 10.1038/s41467-023-41896-1.

本文引用的文献

2
Copper delivery to an endospore coat protein of .
Front Cell Dev Biol. 2022 Sep 5;10:916114. doi: 10.3389/fcell.2022.916114. eCollection 2022.
4
Nutritional immunity: the battle for nutrient metals at the host-pathogen interface.
Nat Rev Microbiol. 2022 Nov;20(11):657-670. doi: 10.1038/s41579-022-00745-6. Epub 2022 May 31.
5
Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis.
Cell. 2022 Jun 9;185(12):2148-2163.e27. doi: 10.1016/j.cell.2022.04.011. Epub 2022 May 17.
6
Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase.
Cell Rep. 2022 May 17;39(7):110834. doi: 10.1016/j.celrep.2022.110834.
7
Bacterial Approaches for Assembling Iron-Sulfur Proteins.
mBio. 2021 Dec 21;12(6):e0242521. doi: 10.1128/mBio.02425-21. Epub 2021 Nov 16.
8
Direct Detection of the Labile Nickel Pool in : New Perspectives on Labile Metal Pools.
J Am Chem Soc. 2021 Nov 10;143(44):18571-18580. doi: 10.1021/jacs.1c08213. Epub 2021 Nov 1.
10
Low-molecular-mass labile metal pools in Escherichia coli: advances using chromatography and mass spectrometry.
J Biol Inorg Chem. 2021 Jun;26(4):479-494. doi: 10.1007/s00775-021-01864-w. Epub 2021 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验