Suppr超能文献

细菌金属传感器蛋白中的金属位点占据和变构开关。

Metal site occupancy and allosteric switching in bacterial metal sensor proteins.

机构信息

Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405-7102, USA.

出版信息

Arch Biochem Biophys. 2012 Mar 15;519(2):210-22. doi: 10.1016/j.abb.2011.11.021. Epub 2011 Dec 8.

Abstract

All prokaryotes encode a panel of metal sensor or metalloregulatory proteins that govern the expression of genes that allows an organism to quickly adapt to toxicity or deprivation of both biologically essential transition metal ions, e.g., Zn, Cu, Fe, and heavy metal pollutants. As such, metal sensor proteins can be considered arbiters of intracellular transition metal bioavailability and thus potentially control the metallation state of the metalloproteins in the cell. Metal sensor proteins are specialized allosteric proteins that regulate transcription as a result direct binding of one or two cognate metal ions, to the exclusion of all others. In most cases, the binding of the cognate metal ion induces a structural change in a protein oligomer that either activates or inhibits operator DNA binding. A quantitative measure of the degree to which a particular metal drives metalloregulation of operator DNA-binding is the allosteric coupling free energy, ΔGc. In this review, we summarize recent work directed toward understanding metal occupancy and metal selectivity of these allosteric switches in selected families of metal sensor proteins and examine the structural origins of ΔGc in the functional context a thermodynamic "set-point" model of intracellular metal homeostasis.

摘要

所有原核生物都编码一组金属传感器或金属调节蛋白,这些蛋白控制着基因的表达,使生物体能够快速适应毒性或两种生物必需的过渡金属离子(如 Zn、Cu、Fe)和重金属污染物的缺乏。因此,金属传感器蛋白可以被认为是细胞内过渡金属生物利用度的仲裁者,从而有可能控制细胞内金属蛋白的金属化状态。金属传感器蛋白是专门的变构蛋白,它们通过直接结合一个或两个同源金属离子来调节转录,从而排除其他所有离子。在大多数情况下,同源金属离子的结合会引起蛋白质寡聚体的结构变化,从而激活或抑制操纵子 DNA 结合。特定金属驱动操纵子 DNA 结合的金属调节程度的定量衡量标准是变构耦合自由能 ΔGc。在这篇综述中,我们总结了最近的工作,旨在了解选定金属传感器蛋白家族中这些变构开关的金属占据和金属选择性,并在细胞内金属动态平衡的热力学“设定点”模型的功能背景下检查 ΔGc 的结构起源。

相似文献

1
Metal site occupancy and allosteric switching in bacterial metal sensor proteins.
Arch Biochem Biophys. 2012 Mar 15;519(2):210-22. doi: 10.1016/j.abb.2011.11.021. Epub 2011 Dec 8.
2
Illuminating allostery in metal sensing transcriptional regulators.
Methods Mol Biol. 2012;875:165-92. doi: 10.1007/978-1-61779-806-1_8.
3
Metalloregulatory proteins: metal selectivity and allosteric switching.
Biophys Chem. 2011 Jul;156(2-3):103-14. doi: 10.1016/j.bpc.2011.03.010. Epub 2011 Apr 5.
4
Metal sensor proteins: nature's metalloregulated allosteric switches.
Dalton Trans. 2007 Aug 7(29):3107-20. doi: 10.1039/b706769k. Epub 2007 Jun 28.
5
Metallochaperones and metalloregulation in bacteria.
Essays Biochem. 2017 May 9;61(2):177-200. doi: 10.1042/EBC20160076.
6
Allosteric control of metal-responsive transcriptional regulators in bacteria.
J Biol Chem. 2020 Feb 7;295(6):1673-1684. doi: 10.1074/jbc.REV119.011444. Epub 2019 Dec 19.
9
A Cu(I)-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile.
Biochemistry. 2008 Oct 7;47(40):10564-75. doi: 10.1021/bi801313y. Epub 2008 Sep 17.
10
Allosteric coupling between transition metal-binding sites in homooligomeric metal sensor proteins.
Methods Mol Biol. 2012;796:31-51. doi: 10.1007/978-1-61779-334-9_3.

引用本文的文献

1
Controlling gene expression through five zinc finger domains of ZNF18.
Protein Sci. 2025 Sep;34(9):e70278. doi: 10.1002/pro.70278.
2
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
3
Metals in Motion: Understanding Labile Metal Pools in Bacteria.
Biochemistry. 2025 Jan 21;64(2):329-345. doi: 10.1021/acs.biochem.4c00726. Epub 2025 Jan 5.
4
Structural Dynamics of the MntR Transcription Factor Is Locked by Mn Binding.
Int J Mol Sci. 2023 Jan 4;24(2):957. doi: 10.3390/ijms24020957.
5
Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in .
ACS Synth Biol. 2023 Mar 17;12(3):735-749. doi: 10.1021/acssynbio.2c00545. Epub 2023 Jan 11.
6
A Review of Metallophores: Pyoverdine, Pyochelin and Pseudopaline.
Biology (Basel). 2022 Nov 25;11(12):1711. doi: 10.3390/biology11121711.
7
Mechanistic insights into the nickel-dependent allosteric response of the Helicobacter pylori NikR transcription factor.
J Biol Chem. 2023 Jan;299(1):102785. doi: 10.1016/j.jbc.2022.102785. Epub 2022 Dec 9.
8
The protein scaffold calibrates metal specificity and activation in MerR sensors.
Microb Biotechnol. 2022 Dec;15(12):2992-3002. doi: 10.1111/1751-7915.14151. Epub 2022 Sep 22.
9
Allosteric regulation of the nickel-responsive NikR transcription factor from Helicobacter pylori.
J Biol Chem. 2021 Jan-Jun;296:100069. doi: 10.1074/jbc.RA120.015459. Epub 2020 Nov 22.
10
Allosteric control of metal-responsive transcriptional regulators in bacteria.
J Biol Chem. 2020 Feb 7;295(6):1673-1684. doi: 10.1074/jbc.REV119.011444. Epub 2019 Dec 19.

本文引用的文献

1
Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state.
J Am Chem Soc. 2011 Dec 14;133(49):19614-7. doi: 10.1021/ja2080532. Epub 2011 Nov 21.
2
Simulations of allosteric motions in the zinc sensor CzrA.
J Am Chem Soc. 2012 Feb 22;134(7):3367-76. doi: 10.1021/ja208047b. Epub 2011 Nov 14.
4
Sequential binding and sensing of Zn(II) by Bacillus subtilis Zur.
Nucleic Acids Res. 2011 Nov;39(21):9130-8. doi: 10.1093/nar/gkr625. Epub 2011 Aug 5.
5
Mycobacterium tuberculosis NmtR harbors a nickel sensing site with parallels to Escherichia coli RcnR.
Biochemistry. 2011 Sep 20;50(37):7941-52. doi: 10.1021/bi200737a. Epub 2011 Aug 26.
6
The theft of host heme by Gram-positive pathogenic bacteria.
Metallomics. 2011 Aug;3(8):788-96. doi: 10.1039/c1mt00047k. Epub 2011 Jul 4.
7
Holo-Ni2+ Helicobacter pylori NikR contains four square-planar nickel-binding sites at physiological pH.
Dalton Trans. 2011 Aug 21;40(31):7831-3. doi: 10.1039/c1dt11107h. Epub 2011 Jul 4.
10
Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens.
J Bacteriol. 2011 Jul;193(14):3461-72. doi: 10.1128/JB.00317-11. Epub 2011 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验