Suppr超能文献

用于预测阿尔茨海默病风险和疾病进展速度的 SNP 相互作用的模拟深度学习模型在 19 号染色体上。

A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression.

机构信息

Department of Neurology, School of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Department of Medical and Molecular Genetics, School of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.

出版信息

Alzheimers Dement. 2023 Dec;19(12):5690-5699. doi: 10.1002/alz.13319. Epub 2023 Jul 6.

Abstract

BACKGROUND

Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre-symptomatic risk assessment but also for building personalized therapeutic strategies.

METHODS

We implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD-risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed.

RESULTS

Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD-risk SNPs were significant predictors of AD progression.

DISCUSSION

The model successfully estimated the contribution of AD-risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.

摘要

背景

识别导致阿尔茨海默病(AD)的遗传模式不仅对症状前的风险评估很重要,而且对建立个性化的治疗策略也很重要。

方法

我们使用一种新颖的模拟深度学习模型,对来自阿尔茨海默病神经影像学倡议(Alzheimer's Disease Neuroimaging Initiative)和成像与阿尔茨海默病遗传生物标志物(Imaging and Genetic Biomarkers of Alzheimer's Disease)数据集的 19 号染色体遗传数据进行了分析。该模型使用遮挡法来量化每个单核苷酸多态性(SNP)对 AD 发生概率的贡献及其上位性影响。确定了 19 号染色体上与 AD 风险相关的前 35 个 SNP,并分析了它们预测 AD 进展速度的能力。

结果

发现 rs561311966(APOC1)和 rs2229918(ERCC1/CD3EAP)是影响 AD 风险的最有力因素。前 35 个与 19 号染色体 AD 风险相关的 SNP 是 AD 进展的显著预测因子。

讨论

该模型成功地估计了导致个体 AD 进展的 AD 风险 SNP 的贡献。这有助于建立预防性精准医学。

相似文献

6
Donepezil for dementia due to Alzheimer's disease.多奈哌齐用于治疗阿尔茨海默病所致的痴呆。
Cochrane Database Syst Rev. 2018 Jun 18;6(6):CD001190. doi: 10.1002/14651858.CD001190.pub3.
9
Galantamine for Alzheimer's disease.加兰他敏用于治疗阿尔茨海默病。
Cochrane Database Syst Rev. 2001(4):CD001747. doi: 10.1002/14651858.CD001747.

本文引用的文献

3
Definitive roles of TOMM40-APOE-APOC1 variants in the Alzheimer's risk.TOMM40-APOE-APOC1 变异在阿尔茨海默病风险中的明确作用。
Neurobiol Aging. 2022 Feb;110:122-131. doi: 10.1016/j.neurobiolaging.2021.09.009. Epub 2021 Sep 15.
8
2021 Alzheimer's disease facts and figures.2021 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2021 Mar;17(3):327-406. doi: 10.1002/alz.12328. Epub 2021 Mar 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验