Suppr超能文献

基于视网膜算法展开与调整的低光照图像增强

Low-Light Image Enhancement by Retinex-Based Algorithm Unrolling and Adjustment.

作者信息

Liu Xinyi, Xie Qi, Zhao Qian, Wang Hong, Meng Deyu

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):15758-15771. doi: 10.1109/TNNLS.2023.3289626. Epub 2024 Oct 29.

Abstract

Low-light image enhancement (LIE) has attracted tremendous research interests in recent years. Retinex theory-based deep learning methods, following a decomposition-adjustment pipeline, have achieved promising performance due to their physical interpretability. However, existing Retinex-based deep learning methods are still suboptimal, failing to leverage useful insights from traditional approaches. Meanwhile, the adjustment step is either oversimplified or overcomplicated, resulting in unsatisfactory performance in practice. To address these issues, we propose a novel deep-learning framework for LIE. The framework consists of a decomposition network (DecNet) inspired by algorithm unrolling and adjustment networks considering both global and local brightness. The algorithm unrolling allows the integration of both implicit priors learned from data and explicit priors inherited from traditional methods, facilitating better decomposition. Meanwhile, considering global and local brightness guides the design of effective yet lightweight adjustment networks. Moreover, we introduce a self-supervised fine-tuning strategy that achieves promising performance without manual hyperparameter tuning. Extensive experiments on benchmark LIE datasets demonstrate the superiority of our approach over existing state-of-the-art methods both quantitatively and qualitatively. Code is available at https://github.com/Xinyil256/RAUNA2023.

摘要

近年来,低光图像增强(LIE)引起了极大的研究兴趣。基于视网膜皮层理论的深度学习方法,遵循分解-调整流程,由于其物理可解释性而取得了有前景的性能。然而,现有的基于视网膜皮层的深度学习方法仍不尽人意,未能利用传统方法中的有用见解。同时,调整步骤要么过于简化,要么过于复杂,导致在实际应用中性能不尽如人意。为了解决这些问题,我们提出了一种用于低光图像增强的新型深度学习框架。该框架由一个受算法展开启发的分解网络(DecNet)和考虑全局及局部亮度的调整网络组成。算法展开允许整合从数据中学习到的隐式先验和从传统方法继承的显式先验,有助于更好地进行分解。同时,考虑全局和局部亮度指导了有效且轻量级的调整网络的设计。此外,我们引入了一种自监督微调策略,无需手动调整超参数就能取得有前景的性能。在基准低光图像增强数据集上进行的大量实验从定量和定性两方面证明了我们的方法优于现有的最先进方法。代码可在https://github.com/Xinyil256/RAUNA2023获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验