Suppr超能文献

利用 CT 预测胃癌的隐匿性腹膜转移或细胞学阳性。

Prediction of occult peritoneal metastases or positive cytology using CT in gastric cancer.

机构信息

The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.

Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China.

出版信息

Eur Radiol. 2023 Dec;33(12):9275-9285. doi: 10.1007/s00330-023-09854-z. Epub 2023 Jul 6.

Abstract

OBJECTIVE

Accurate prediction of preoperative occult peritoneal metastasis (OPM) is critical to selecting appropriate therapeutic regimen for gastric cancer (GC). Considering the clinical practicability, we develop and validate a visible nomogram that integrates the CT images and clinicopathological parameters for the individual preoperative prediction of OPM in GC.

METHODS

This retrospective study included 520 patients who underwent staged laparoscopic exploration or peritoneal lavage cytology (PLC) examination. Univariate and multivariate logistic regression results were used to screen model predictors and construct nomograms of OPM risk. The performance of the model was detected by using ROC, accuracy, and C-index. The bootstrap resampling method was considered internal validation of the model. The Delong test was used to evaluate the difference in AUC between the two models.

RESULTS

Grade 2 mural stratification, tumor thickness, and the Lauren classification diffuse were significant predictors of OPM (p < 0.05). The nomogram of these three factors (compared with the original model) showed a higher predictive effect (p < 0.001). The area under the curve (AUC) of the model was 0.830 (95% CI 0.788-0.873), and the internally validated AUC of 1000 bootstrap samples was 0.826 (95% CI 0.756-0.870). The sensitivity, specificity, and accuracy were 76.0%, 78.8%, and 78.3%, respectively.

CONCLUSIONS

CT phenotype-based nomogram demonstrates favorable discrimination and calibration, and it can be conveniently used for preoperative individual risk rating of OPM in GC.

CLINICAL RELEVANCE STATEMENT

In this study, the preoperative OPM prediction model based on CT images (mural stratification, tumor thickness) combined with pathological parameters (the Lauren classification) showed excellent predictive ability in GC, and it is also suitable for clinicians to use rather than limited to professional radiologists.

KEY POINTS

• Nomogram based on CT image analysis can effectively predict occult peritoneal metastasis in gastric cancer (training area under the curve (AUC) = 0.830 and bootstrap AUC = 0.826). • Nomogram model combined with CT features performed better than the original model (established using only clinicopathological parameters) in differentiating occult peritoneal metastasis of gastric cancer.

摘要

目的

准确预测术前隐匿性腹膜转移(OPM)对于选择合适的胃癌(GC)治疗方案至关重要。考虑到临床实用性,我们开发并验证了一种可见的列线图,该列线图可整合 CT 图像和临床病理参数,用于 GC 患者的个体术前 OPM 预测。

方法

本回顾性研究纳入了 520 名接受分期腹腔镜探查或腹腔灌洗细胞学(PLC)检查的患者。使用单因素和多因素逻辑回归结果筛选模型预测因子,并构建 OPM 风险的列线图。使用 ROC、准确性和 C 指数来检测模型性能。使用 bootstrap 重采样方法进行模型的内部验证。采用 Delong 检验评估两个模型 AUC 之间的差异。

结果

壁层结构分级 2、肿瘤厚度和 Lauren 分类弥漫型是 OPM 的显著预测因子(p<0.05)。这三个因素的列线图(与原始模型相比)显示出更高的预测效果(p<0.001)。模型的曲线下面积(AUC)为 0.830(95%CI 0.788-0.873),1000 个 bootstrap 样本的内部验证 AUC 为 0.826(95%CI 0.756-0.870)。灵敏度、特异性和准确性分别为 76.0%、78.8%和 78.3%。

结论

基于 CT 表型的列线图显示出良好的区分度和校准度,可方便地用于 GC 患者术前 OPM 的个体风险评分。

临床相关性声明

在这项研究中,基于 CT 图像(壁层结构分级、肿瘤厚度)结合病理参数(Lauren 分类)的术前 OPM 预测模型在 GC 中显示出优异的预测能力,并且也适用于临床医生使用,而不仅仅限于专业放射科医生。

关键点

  • CT 图像分析的列线图可有效预测胃癌隐匿性腹膜转移(训练 AUC=0.830,bootstrap AUC=0.826)。

  • 列线图模型结合 CT 特征在区分胃癌隐匿性腹膜转移方面优于仅基于临床病理参数建立的原始模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验