Suppr超能文献

预测胃癌肝转移患者总生存期和癌症特异性生存期的列线图模型的开发与验证:一项基于监测、流行病学和最终结果(SEER)数据库的队列研究

Development and validation of nomogram models for predicting overall survival and cancer-specific survival in gastric cancer patients with liver metastases: a cohort study based on the SEER database.

作者信息

Meng Ning, Niu Xiaoman, Wu Jiaxiang, Wu Haotian, Li Tongkun, Yang Jiaxuan, Ding Ping'an, Guo Honghai, Tian Yuan, Yang Peigang, Zhang Zhidong, Wang Dong, Zhao Qun

机构信息

The Third Department of Surgery, The Fourth Hospital of Hebei Medical University Shijiazhuang 050011, Hebei, China.

Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer Shijiazhuang 050011, Hebei, China.

出版信息

Am J Cancer Res. 2024 May 15;14(5):2272-2286. doi: 10.62347/ZPPK5664. eCollection 2024.

Abstract

OBJECTIVE

To establish nomogram models for predicting the overall survival (OS) and cancer-specific survival (CSS) of gastric cancer liver metastasis (GCLM) patients.

METHODS

Data from the Surveillance, Epidemiology, and End Results (SEER) database for 5,451 GCLM patients diagnosed between 2010 and 2015 were analyzed. The cohort was divided into a training set (3,815 cases) and an internal validation set (1,636 cases). External validation included 193 patients from the Fourth Hospital of Hebei Medical University and 171 patients from the People's Hospital of Shijiazhuang City, spanning 2016-2018. Multivariable Cox regression analysis identified eight independent prognostic factors for OS and CSS in GCLM patients, including age, histological type, grade, tumor size, surgery, chemotherapy, bone metastasis, and lung metastasis. Two nomogram models were developed based on these factors and evaluated using time-dependent receiver operating characteristic curve analysis, calibration curves, and decision curve analysis.

RESULTS

Internal validation showed that the nomogram models outperformed the American Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM) staging system in predicting 1-year, 2-year, and 3-year OS and CSS in GCLM patients (1-year OS: 0.801 vs. 0.593, P < 0.001; 1-year CSS: 0.807 vs. 0.598, P < 0.001; 2-year OS: 0.803 vs. 0.630, P < 0.001; 2-year CSS: 0.802 vs. 0.633, P < 0.001; 3-year OS: 0.824 vs. 0.691, P < 0.001; 3-year CSS: 0.839 vs. 0.692, P < 0.001).

CONCLUSION

This study developed and validated nomogram models using SEER database data to predict OS and CSS in GCLM patients. These models offer improved prognostic accuracy over traditional staging systems, aiding in clinical decision-making.

摘要

目的

建立预测胃癌肝转移(GCLM)患者总生存期(OS)和癌症特异性生存期(CSS)的列线图模型。

方法

分析监测、流行病学和最终结果(SEER)数据库中2010年至2015年间诊断的5451例GCLM患者的数据。该队列分为训练集(3815例)和内部验证集(1636例)。外部验证包括来自河北医科大学第四医院的193例患者和石家庄市人民医院的171例患者,时间跨度为2016 - 2018年。多变量Cox回归分析确定了GCLM患者OS和CSS的八个独立预后因素,包括年龄、组织学类型、分级、肿瘤大小、手术、化疗、骨转移和肺转移。基于这些因素开发了两个列线图模型,并使用时间依赖性受试者操作特征曲线分析、校准曲线和决策曲线分析进行评估。

结果

内部验证表明,列线图模型在预测GCLM患者1年、2年和3年的OS和CSS方面优于美国癌症联合委员会(AJCC)的肿瘤-淋巴结-转移(TNM)分期系统(1年OS:0.801对0.593,P < 0.001;1年CSS:0.807对0.598,P < 0.001;2年OS:0.803对0.630,P < 0.001;2年CSS:0.802对0.633,P < 0.001;3年OS:0.824对0.691,P < 0.001;3年CSS:0.839对0.692,P < 0.001)。

结论

本研究利用SEER数据库数据开发并验证了列线图模型,以预测GCLM患者的OS和CSS。这些模型比传统分期系统具有更高的预后准确性,有助于临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验