Suppr超能文献

文字中的大流行:通过大规模词汇联想任务追踪快速语义变化

The Pandemic in Words: Tracking Fast Semantic Changes via a Large-Scale Word Association Task.

作者信息

Laurino Julieta, De Deyne Simon, Cabana Álvaro, Kaczer Laura

机构信息

Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)-CONICET, Buenos Aires, Argentina.

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

出版信息

Open Mind (Camb). 2023 Jun 9;7:221-239. doi: 10.1162/opmi_a_00081. eCollection 2023.

Abstract

Most words have a variety of senses that can be added, removed, or altered over time. Understanding how they change across different contexts and time periods is crucial for revealing the role of language in social and cultural evolution. In this study we aimed to explore the collective changes in the mental lexicon as a consequence of the COVID-19 pandemic. We performed a large-scale word association experiment in Rioplatense Spanish. The data were obtained in December 2020, and compared with responses previously obtained from the Small World of Words database (SWOW-RP, Cabana et al., 2023). Three different word-association measures detected changes in a word's mental representation from Precovid to Covid. First, significantly more new associations appeared for a set of pandemic-related words. These new associations can be interpreted as incorporating new senses. For example, the word 'isolated' incorporated direct associations with 'coronavirus' and 'quarantine'. Second, when analyzing the distribution of responses, we observed a greater Kullback-Leibler divergence (i.e., relative entropy) between the Precovid and Covid periods for pandemic words. Thus, some words (e.g., 'protocol', or 'virtual') changed their overall association patterns due to the COVID-19 pandemic. Finally, using semantic similarity analysis, we evaluated the changes between the Precovid and Covid periods for each cue word's nearest neighbors and the changes in their similarity to certain word senses. We found a larger diachronic difference for pandemic cues where polysemic words like 'immunity' or 'trial' increased their similarity to sanitary/health words during the Covid period. We propose that this novel methodology can be expanded to other scenarios of fast diachronic semantic changes.

摘要

大多数单词都有多种语义,这些语义会随着时间的推移而增加、减少或改变。了解它们在不同语境和时间段内如何变化,对于揭示语言在社会和文化演变中的作用至关重要。在本研究中,我们旨在探究2019冠状病毒病(COVID-19)大流行导致的心理词汇库的集体变化。我们在拉普拉塔河西班牙语地区进行了一项大规模的词语联想实验。数据于2020年12月获得,并与之前从“小词世界”数据库(SWOW-RP,卡瓦纳等人,2023年)获得的反应进行了比较。三种不同的词语联想测量方法检测到了一个单词从新冠疫情前到疫情期间心理表征的变化。首先,一组与大流行相关的单词出现了显著更多的新联想。这些新联想可以被解释为纳入了新的语义。例如,“隔离”这个词纳入了与“冠状病毒”和“隔离”的直接联想。其次,在分析反应分布时,我们观察到疫情相关词汇在新冠疫情前和疫情期间的库尔贝克-莱布勒散度(即相对熵)更大。因此,一些单词(如“协议”或“虚拟”)由于2019冠状病毒病大流行而改变了它们的整体联想模式。最后,使用语义相似性分析,我们评估了每个线索词在新冠疫情前和疫情期间最近邻的变化以及它们与某些词义相似性的变化。我们发现,对于疫情线索词,像“免疫”或“试验”这样的多义词在疫情期间与卫生/健康词汇的相似性增加,存在更大的历时差异。我们建议,这种新颖的方法可以扩展到其他快速历时语义变化的场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/196d/10320820/c3fa7ef083af/opmi-07-221-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验