Aix-Marseille Univ, CNRS, LPC, Marseille, France.
Université Côte d'Azur, Inria, France.
Transl Vis Sci Technol. 2023 Jul 3;12(7):9. doi: 10.1167/tvst.12.7.9.
The purpose of this study was to validate a new automated method to locate the fovea on normal and pathological fundus images. Compared to the normative anatomic measures (NAMs), our vessel-based fovea localization (VBFL) approach relies on the retina's vessel structure to make predictions.
The spatial relationship between the fovea location and vessel characteristics is learnt from healthy fundus images and then used to predict fovea location in new images. We evaluate the VBFL method on three categories of fundus images: healthy images acquired with different head orientations and fixation locations, healthy images with simulated macular lesions, and pathological images from age-related macular degeneration (AMD).
For healthy images taken with the head tilted to the side, the NAM estimation error is significantly multiplied by 4, whereas VBFL yields no significant increase, representing a 73% reduction in prediction error. With simulated lesions, VBFL performance decreases significantly as lesion size increases and remains better than NAM until lesion size reaches 200 degrees2. For pathological images, average prediction error was 2.8 degrees, with 64% of the images yielding an error of 2.5 degrees or less. VBFL was not robust for images showing darker regions and/or incomplete representation of the optic disk.
The vascular structure provides enough information to precisely locate the fovea in fundus images in a way that is robust to head tilt, eccentric fixation location, missing vessels, and actual macular lesions.
The VBFL method should allow researchers and clinicians to assess automatically the eccentricity of a newly developed area of fixation in fundus images with macular lesions.
本研究旨在验证一种新的自动方法,以定位正常和病理性眼底图像的黄斑中心凹。与规范的解剖学测量(NAM)相比,我们基于血管的黄斑中心凹定位(VBFL)方法依赖于视网膜的血管结构进行预测。
从健康眼底图像中学习黄斑中心凹位置与血管特征之间的空间关系,然后将其用于预测新图像中的黄斑中心凹位置。我们在三类眼底图像上评估 VBFL 方法:不同头位和注视位置采集的健康图像、具有模拟黄斑病变的健康图像以及来自年龄相关性黄斑变性(AMD)的病理性图像。
对于头部倾斜的健康图像,NAM 估计误差显著增加了 4 倍,而 VBFL 则没有显著增加,代表预测误差减少了 73%。对于模拟病变,随着病变大小的增加,VBFL 性能显著下降,但仍优于 NAM,直到病变大小达到 200 度 2。对于病理性图像,平均预测误差为 2.8 度,其中 64%的图像误差为 2.5 度或更小。VBFL 对于显示较暗区域和/或视盘表示不完整的图像不够稳健。
血管结构提供了足够的信息,可以以对头部倾斜、偏心注视位置、血管缺失和实际黄斑病变具有鲁棒性的方式精确定位眼底图像中的黄斑中心凹。
张晓彤