Suppr超能文献

失控的循环:转录-复制冲突中的 R 环。

Looping out of control: R-loops in transcription-replication conflict.

机构信息

Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.

出版信息

Chromosoma. 2024 Jan;133(1):37-56. doi: 10.1007/s00412-023-00804-8. Epub 2023 Jul 7.

Abstract

Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.

摘要

转录-复制冲突是复制压力的一个主要原因,当复制叉与转录机制碰撞时就会产生这种压力。转录在复制叉位点的停滞会损害染色体复制保真度,并可能导致 DNA 损伤,对基因组稳定性和生物体健康产生潜在的有害后果。转录机制对 DNA 复制的阻碍是复杂的,它可以涉及停滞或延伸的 RNA 聚合酶、启动子结合的转录因子复合物,或 DNA 拓扑约束。此外,在过去的二十年中,研究已经确定了共转录 R 环是活跃基因中 DNA 复制叉受损的主要来源。然而,R 环如何在分子水平上阻碍 DNA 复制还不完全清楚。目前的证据表明,RNA:DNA 杂交体、DNA 二级结构、停滞的 RNA 聚合酶以及与 R 环相关的浓缩染色质状态都有助于叉的进展。此外,由于 R 环和复制叉都是内在不对称的结构,R 环-复制体碰撞的结果受到碰撞方向的影响。总的来说,这些数据表明,R 环对 DNA 复制的影响高度依赖于它们特定的结构组成。在这里,我们将总结我们目前对 R 环诱导的复制叉进展缺陷的分子基础的理解。

相似文献

1
Looping out of control: R-loops in transcription-replication conflict.
Chromosoma. 2024 Jan;133(1):37-56. doi: 10.1007/s00412-023-00804-8. Epub 2023 Jul 7.
3
Replisome bypass of transcription complexes and R-loops.
Nucleic Acids Res. 2020 Oct 9;48(18):10353-10367. doi: 10.1093/nar/gkaa741.
5
Toxic R-loops: Cause or consequence of replication stress?
DNA Repair (Amst). 2021 Nov;107:103199. doi: 10.1016/j.dnarep.2021.103199. Epub 2021 Aug 3.
6
Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops.
Mol Cell. 2020 Feb 6;77(3):528-541.e8. doi: 10.1016/j.molcel.2019.10.026. Epub 2019 Nov 20.
8
ATAD5 restricts R-loop formation through PCNA unloading and RNA helicase maintenance at the replication fork.
Nucleic Acids Res. 2020 Jul 27;48(13):7218-7238. doi: 10.1093/nar/gkaa501.
9
Direct visualization of replication and R-loop collision using single-molecule imaging.
Nucleic Acids Res. 2024 Jan 11;52(1):259-273. doi: 10.1093/nar/gkad1101.
10
DDX17 helicase promotes resolution of R-loop-mediated transcription-replication conflicts in human cells.
Nucleic Acids Res. 2022 Nov 28;50(21):12274-12290. doi: 10.1093/nar/gkac1116.

引用本文的文献

1
ZC3H4 safeguards genome integrity by preventing transcription-replication conflicts at noncoding RNA loci.
Sci Adv. 2025 Jun 20;11(25):eadt8346. doi: 10.1126/sciadv.adt8346. Epub 2025 Jun 18.
2
DNA-RNA hybrids in inflammation: sources, immune response, and therapeutic implications.
J Mol Med (Berl). 2025 May;103(5):511-529. doi: 10.1007/s00109-025-02533-0. Epub 2025 Mar 25.
3
G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation.
Science. 2025 Mar 7;387(6738):eadt1978. doi: 10.1126/science.adt1978.
6
Functional conservation and divergence of arabidopsis VENOSA4 and human SAMHD1 in DNA repair.
Heliyon. 2024 Dec 10;11(1):e41019. doi: 10.1016/j.heliyon.2024.e41019. eCollection 2025 Jan 15.
7
8
The hidden architects of the genome: a comprehensive review of R-loops.
Mol Biol Rep. 2024 Oct 26;51(1):1095. doi: 10.1007/s11033-024-10025-6.
9
RNA Polymerase II is a Polar Roadblock to a Progressing DNA Fork.
bioRxiv. 2024 Oct 13:2024.10.11.617674. doi: 10.1101/2024.10.11.617674.

本文引用的文献

1
RAD51 bypasses the CMG helicase to promote replication fork reversal.
Science. 2023 Apr 28;380(6643):382-387. doi: 10.1126/science.add7328. Epub 2023 Apr 27.
2
Excessive reactive oxygen species induce transcription-dependent replication stress.
Nat Commun. 2023 Mar 30;14(1):1791. doi: 10.1038/s41467-023-37341-y.
3
Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids.
Nat Struct Mol Biol. 2023 Mar;30(3):348-359. doi: 10.1038/s41594-023-00928-6. Epub 2023 Mar 2.
4
PARP1 associates with R-loops to promote their resolution and genome stability.
Nucleic Acids Res. 2023 Mar 21;51(5):2215-2237. doi: 10.1093/nar/gkad066.
5
Replication fork uncoupling causes nascent strand degradation and fork reversal.
Nat Struct Mol Biol. 2023 Jan;30(1):115-124. doi: 10.1038/s41594-022-00871-y. Epub 2023 Jan 2.
6
R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response.
Nature. 2023 Jan;613(7942):187-194. doi: 10.1038/s41586-022-05545-9. Epub 2022 Dec 21.
7
A transcription-based approach to purify R-loop-containing plasmid DNA templates in vitro.
STAR Protoc. 2023 Mar 17;4(1):101937. doi: 10.1016/j.xpro.2022.101937. Epub 2022 Dec 13.
8
Branchpoint translocation by fork remodelers as a general mechanism of R-loop removal.
Cell Rep. 2022 Dec 6;41(10):111749. doi: 10.1016/j.celrep.2022.111749.
9
METTL3-mediated m6A modification stabilizes TERRA and maintains telomere stability.
Nucleic Acids Res. 2022 Nov 11;50(20):11619-11634. doi: 10.1093/nar/gkac1027.
10
RAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRA.
Mol Cell. 2022 Nov 3;82(21):4001-4017.e7. doi: 10.1016/j.molcel.2022.09.025. Epub 2022 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验