Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.
Lineberger Comprehensive Cancer Center and Departments of Microbiology and Immunology, and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States.
Elife. 2021 Sep 8;10:e72286. doi: 10.7554/eLife.72286.
R-loops are a major source of genome instability associated with transcription-induced replication stress. However, how R-loops inherently impact replication fork progression is not understood. Here, we characterize R-loop-replisome collisions using a fully reconstituted eukaryotic DNA replication system. We find that RNA:DNA hybrids and G-quadruplexes at both co-directional and head-on R-loops can impact fork progression by inducing fork stalling, uncoupling of leading strand synthesis from replisome progression, and nascent strand gaps. RNase H1 and Pif1 suppress replication defects by resolving RNA:DNA hybrids and G-quadruplexes, respectively. We also identify an intrinsic capacity of replisomes to maintain fork progression at certain R-loops by unwinding RNA:DNA hybrids, repriming leading strand synthesis downstream of G-quadruplexes, or utilizing R-loop transcripts to prime leading strand restart during co-directional R-loop-replisome collisions. Collectively, the data demonstrates that the outcome of R-loop-replisome collisions is modulated by R-loop structure, providing a mechanistic basis for the distinction of deleterious from non-deleterious R-loops.
R 环是与转录诱导的复制压力相关的基因组不稳定性的主要来源。然而,R 环如何内在地影响复制叉的推进尚不清楚。在这里,我们使用完全重组的真核 DNA 复制系统来表征 R 环-复制体碰撞。我们发现,顺向和迎面 R 环中的 RNA:DNA 杂交体和 G-四联体都可以通过诱导叉停顿、将前导链合成与复制体推进解耦以及新生链缺口来影响叉的推进。RNase H1 和 Pif1 通过分别解析 RNA:DNA 杂交体和 G-四联体来抑制复制缺陷。我们还发现,复制体具有内在的能力,可以通过解开 RNA:DNA 杂交体、在 G-四联体下游重新启动前导链合成,或在顺向 R 环-复制体碰撞期间利用 R 环转录物来启动前导链重新启动,从而在某些 R 环处维持叉的推进。总的来说,这些数据表明 R 环-复制体碰撞的结果是由 R 环结构调节的,为区分有害和非有害 R 环提供了机制基础。