Octasic Inc., 2901 Rachel, Montréal, QC H1W 4A4, Canada.
Department of Electrical and Computer Engineering, McGill University, 3480 University, Montréal, QC H3A 0E9, Canada.
Sensors (Basel). 2023 Jun 14;23(12):5581. doi: 10.3390/s23125581.
This paper explores the use of low earth orbit (LEO) satellite links in long-term monitoring of water levels across remote areas. Emerging sparse LEO satellite constellations maintain sporadic connection to the ground station, and transmissions need to be scheduled for satellite overfly periods. For remote sensing, the energy consumption optimization is critical, and we develop a learning approach for scheduling the transmission times from the sensors. Our online learning-based approach combines Monte Carlo and modified k-armed bandit approaches, to produce an inexpensive scheme that is applicable to scheduling any LEO satellite transmissions. We demonstrate its ability to adapt in three common scenarios, to save the transmission energy 20-fold, and provide the means to explore the parameters. The presented study is applicable to wide range of IoT applications in areas with no existing wireless coverages.
本文探讨了在远程地区长期监测水位中使用低地球轨道(LEO)卫星链路的问题。新兴的稀疏 LEO 卫星星座与地面站保持间断连接,因此需要为卫星飞越时段安排传输。对于遥感而言,能量消耗的优化至关重要,我们开发了一种从传感器安排传输时间的学习方法。我们的基于在线学习的方法结合了蒙特卡罗和改进的 k-armed 强盗方法,提出了一种适用于任何 LEO 卫星传输的节能方案。我们在三个常见场景中展示了其自适应能力,能够将传输能量节省 20 倍,并提供了探索参数的手段。本研究适用于没有现有无线覆盖的广泛物联网应用领域。