Suppr超能文献

低成本大气传感器在北极环境中的长期性能评估。

Long-Term Performance Assessment of Low-Cost Atmospheric Sensors in the Arctic Environment.

机构信息

Institute of BioEconomy, National Research Council of Italy (CNR IBE), 50019 Sesto Fiorentino (FI), Italy.

Institute of Polar Sciences, National Research Council of Italy (CNR ISP), 40129 Bologna (BO), Italy.

出版信息

Sensors (Basel). 2020 Mar 30;20(7):1919. doi: 10.3390/s20071919.

Abstract

The Arctic is an important natural laboratory that is extremely sensitive to climatic changes and its monitoring is, therefore, of great importance. Due to the environmental extremes it is often hard to deploy sensors and observations are limited to a few sparse observation points limiting the spatial and temporal coverage of the Arctic measurement. Given these constraints the possibility of deploying a rugged network of low-cost sensors remains an interesting and convenient option. The present work validates for the first time a low-cost sensor array (AIRQino) for monitoring basic meteorological parameters and atmospheric composition in the Arctic (air temperature, relative humidity, particulate matter, and CO). AIRQino was deployed for one year in the Svalbard archipelago and its outputs compared with reference sensors. Results show good agreement with the reference meteorological parameters (air temperature (T) and relative humidity (RH)) with correlation coefficients above 0.8 and small absolute errors (≈1 °C for temperature and ≈6% for RH). Particulate matter (PM) low-cost sensors show a good linearity (r ≈ 0.8) and small absolute errors for both PM and PM (≈1 µg m for PM and ≈3 µg m for PM), while overall accuracy is impacted both by the unknown composition of the local aerosol, and by high humidity conditions likely generating hygroscopic effects. CO exhibits a satisfying agreement with r around 0.70 and an absolute error of ≈23 mg m. Overall these results, coupled with an excellent data coverage and scarce need of maintenance make the AIRQino or similar devices integrations an interesting tool for future extended sensor networks also in the Arctic environment.

摘要

北极是一个对气候变化极其敏感的重要自然实验室,因此对其进行监测非常重要。由于环境极端,通常很难部署传感器,而且观测仅限于少数稀疏的观测点,这限制了北极测量的空间和时间覆盖范围。鉴于这些限制,部署坚固耐用的低成本传感器网络仍然是一种有趣且方便的选择。本工作首次验证了一种用于监测北极基本气象参数和大气成分(空气温度、相对湿度、颗粒物和 CO)的低成本传感器阵列(AIRQino)。AIRQino 在斯瓦尔巴群岛部署了一年,并将其输出与参考传感器进行了比较。结果表明,与参考气象参数(空气温度(T)和相对湿度(RH))具有很好的一致性,相关系数高于 0.8,绝对误差较小(温度约为 1°C,相对湿度约为 6%)。颗粒物(PM)低成本传感器具有良好的线性度(r ≈ 0.8)和较小的绝对误差(PM 约为 1µg m,PM 约为 3µg m),而整体准确性受到本地气溶胶组成未知以及可能产生吸湿效应的高湿度条件的影响。CO 与 r 的一致性较好,约为 0.70,绝对误差约为 23mg m。总的来说,这些结果加上出色的数据覆盖范围和极少的维护需求,使得 AIRQino 或类似设备的集成成为未来在北极环境中扩展传感器网络的有趣工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e2b/7180591/a76fa681bcb3/sensors-20-01919-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验