Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
J Biosci Bioeng. 2023 Sep;136(3):253-260. doi: 10.1016/j.jbiosc.2023.06.007. Epub 2023 Jul 7.
Bacterial magnetosomes synthesized by the magnetotactic bacterium Magnetospirillum magneticum are suitable for biomedical and biotechnological applications because of their high level of chemical purity of mineral with well-defined morphological features and a biocompatible lipid bilayer coating. However, utilizations of native magnetosomes are not sufficient for maximum effectiveness in many applications as the appropriate particle size differs. In this study, a method to control magnetosome particle size is developed for integration into targeted technological applications. The size and morphology of magnetosome crystals are highly regulated by the complex interactions of magnetosome synthesis-related genes; however, these interactions have not been fully elucidated. In contrast, previous studies have shown a positive correlation between vesicle and crystal sizes. Therefore, control of the magnetosome vesicle size is tuned by modifying the membrane lipid composition. Exogenous phospholipid synthesis pathways have been genetically introduced into M. magneticum. The experimental results show that these phospholipids altered the properties of the magnetosome membrane vesicles, which yielded larger magnetite crystal sizes. The genetic engineering approach presented in this study is shown to be useful for controlling magnetite crystal size without involving complex interactions of magnetosome synthesis-related genes.
由趋磁细菌 Magnetospirillum magneticum 合成的细菌磁小体由于其矿物的高化学纯度、具有明确定义的形态特征和生物相容性的脂质双层涂层,非常适合用于生物医学和生物技术应用。然而,由于适当的颗粒大小不同,在许多应用中,天然磁小体的利用并不足以发挥最大效果。在这项研究中,开发了一种控制磁小体颗粒大小的方法,以整合到靶向技术应用中。磁小体晶体的大小和形态受到磁小体合成相关基因的复杂相互作用的高度调节;然而,这些相互作用尚未完全阐明。相比之下,先前的研究表明囊泡和晶体大小之间存在正相关关系。因此,通过改变膜脂质组成来调节磁小体囊泡的大小。已经通过基因将外源磷脂合成途径引入到 M. magneticum 中。实验结果表明,这些磷脂改变了磁小体膜囊泡的性质,从而产生了更大的磁铁矿晶体尺寸。本研究中提出的遗传工程方法被证明可用于控制磁铁矿晶体尺寸,而无需涉及磁小体合成相关基因的复杂相互作用。