Suppr超能文献

靶向代谢组学分析作为非小细胞肺癌患者诊断工具。

Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer.

机构信息

World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435.

Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia, 119435.

出版信息

Sci Rep. 2023 Jul 8;13(1):11072. doi: 10.1038/s41598-023-38140-7.

Abstract

Lung cancer is referred to as the second most common cancer worldwide and is mainly associated with complex diagnostics and the absence of personalized therapy. Metabolomics may provide significant insights into the improvement of lung cancer diagnostics through identification of the specific biomarkers or biomarker panels that characterize the pathological state of the patient. We performed targeted metabolomic profiling of plasma samples from individuals with non-small cell lung cancer (NSLC, n = 100) and individuals without any cancer or chronic pathologies (n = 100) to identify the relationship between plasma endogenous metabolites and NSLC by means of modern comprehensive bioinformatics tools, including univariate analysis, multivariate analysis, partial correlation network analysis and machine learning. Through the comparison of metabolomic profiles of patients with NSCLC and noncancer individuals, we identified significant alterations in the concentration levels of metabolites mainly related to tryptophan metabolism, the TCA cycle, the urea cycle and lipid metabolism. Additionally, partial correlation network analysis revealed new ratios of the metabolites that significantly distinguished the considered groups of participants. Using the identified significantly altered metabolites and their ratios, we developed a machine learning classification model with an ROC AUC value equal to 0.96. The developed machine learning lung cancer model may serve as a prototype of the approach for the in-time diagnostics of lung cancer that in the future may be introduced in routine clinical use. Overall, we have demonstrated that the combination of metabolomics and up-to-date bioinformatics can be used as a potential tool for proper diagnostics of patients with NSCLC.

摘要

肺癌是全球第二大常见癌症,主要与复杂的诊断和缺乏个性化治疗有关。代谢组学可以通过鉴定特定的生物标志物或生物标志物谱来为改善肺癌诊断提供重要的见解,这些标志物或生物标志物谱可以描述患者的病理状态。我们对 100 名非小细胞肺癌(NSCLC)患者和 100 名无癌症或慢性病理的个体的血浆样本进行了靶向代谢组学分析,旨在通过现代综合生物信息学工具(包括单变量分析、多变量分析、部分相关网络分析和机器学习)来鉴定血浆内源性代谢物与 NSCLC 之间的关系。通过比较 NSCLC 患者和非癌症个体的代谢组学图谱,我们确定了代谢物浓度水平的显著变化,这些代谢物主要与色氨酸代谢、三羧酸循环、尿素循环和脂质代谢有关。此外,部分相关网络分析揭示了区分考虑组别的参与者的新代谢物比值。使用鉴定出的显著改变的代谢物及其比值,我们开发了一个具有 ROC AUC 值为 0.96 的机器学习分类模型。开发的机器学习肺癌模型可以作为及时诊断肺癌的方法的原型,未来可能会引入常规临床使用。总的来说,我们已经证明,代谢组学和最新的生物信息学的结合可以作为 NSCLC 患者适当诊断的潜在工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5559/10329697/e954132851aa/41598_2023_38140_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验