Suppr超能文献

代谢组学与机器学习的整合揭示了色氨酸代谢物是预测培美曲塞治疗非小细胞肺癌疗效的敏感生物标志物。

Integration of metabolomics and machine learning revealed tryptophan metabolites are sensitive biomarkers of pemetrexed efficacy in non-small cell lung cancer.

机构信息

Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

出版信息

Cancer Med. 2023 Sep;12(18):19245-19259. doi: 10.1002/cam4.6446. Epub 2023 Aug 21.

Abstract

BACKGROUND

Anti-folate drug pemetrexed is a vital chemotherapy medication for non-small cell lung cancer (NSCLC). Its response varies widely and often develops resistance to the treatment. Therefore, it is urgent to identify biomarkers and establish models for drug efficacy evaluation and prediction for rational drug use.

METHODS

A total of 360 subjects were screened and 323 subjects were recruited. Using metabolomics in combination with machine learning methods, we are trying to select potential biomarkers to diagnose NSCLC and evaluate the efficacy of pemetrexed in treating NSCLC. Furtherly, we measured the concentration of eight metabolites in the tryptophan metabolism pathway in the validation set containing 201 subjects using a targeted metabolomics method with UPLC-MS/MS.

RESULTS

In the discovery set containing 122 subjects, the metabolic profile of healthy controls (H), newly diagnosed NSCLC patients (ND), patients who responded well to pemetrexed treatment (S) and pemetrexed-resistant patients (R) differed significantly on the PLS-DA scores plot. Pathway analysis showed that glycine, serine and threonine metabolism occurred in every two group comparisons. TCA cycle, pyruvate metabolism and glycerolipid metabolism are the most significantly changed pathways between ND and H group, pyruvate metabolism was the most altered pathway between S and ND group, and tryptophan metabolism was the most changed pathway between S and R group. We found Random forest method had the maximum area under the curve (AUC) and can be easily interpreted. The AUC is 0.981 for diagnosing patients with NSCLC and 0.954 for evaluating pemetrexed efficiency.

CONCLUSION

We compared eight mathematical models to evaluate pemetrexed efficiency for treating NSCLC. The Random forest model established with metabolic markers tryptophan, kynurenine and xanthurenic acidcan accurately diagnose NSCLC and evaluate the response of pemetrexed.

摘要

背景

抗叶酸药物培美曲塞是治疗非小细胞肺癌(NSCLC)的重要化疗药物。其反应差异很大,并且经常对治疗产生耐药性。因此,迫切需要确定生物标志物并建立药物功效评估和预测模型,以实现合理用药。

方法

共筛选了 360 例受试者,纳入了 323 例受试者。我们使用代谢组学结合机器学习方法,试图选择潜在的生物标志物来诊断 NSCLC,并评估培美曲塞治疗 NSCLC 的疗效。进一步,我们使用 UPLC-MS/MS 靶向代谢组学方法,在包含 201 例受试者的验证集中测量了色氨酸代谢途径中的 8 种代谢物的浓度。

结果

在包含 122 例受试者的发现集中,健康对照组(H)、新诊断的 NSCLC 患者(ND)、对培美曲塞治疗反应良好的患者(S)和培美曲塞耐药患者(R)之间的代谢谱在 PLS-DA 得分图上差异显著。途径分析表明,甘氨酸、丝氨酸和苏氨酸代谢在每组两两比较中均发生。ND 和 H 组之间 TCA 循环、丙酮酸代谢和甘油磷脂代谢是变化最显著的途径,S 和 ND 组之间丙酮酸代谢是变化最显著的途径,S 和 R 组之间色氨酸代谢是变化最显著的途径。我们发现随机森林方法具有最大的曲线下面积(AUC),且易于解释。AUC 分别为 0.981,可用于诊断 NSCLC,0.954,可用于评估培美曲塞的疗效。

结论

我们比较了八种数学模型来评估培美曲塞治疗 NSCLC 的疗效。基于色氨酸、犬尿氨酸和黄尿酸代谢物建立的随机森林模型可以准确诊断 NSCLC,并评估培美曲塞的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a09/10557891/6e8b1208234c/CAM4-12-19245-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验