Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.
Systems Forecasting UK Ltd, Lancaster, UK.
J Pharmacokinet Pharmacodyn. 2023 Oct;50(5):395-409. doi: 10.1007/s10928-023-09872-w. Epub 2023 Jul 9.
Global sensitivity analysis (GSA) evaluates the impact of variability and/or uncertainty of the model parameters on given model outputs. GSA is useful for assessing the quality of Pharmacometric model inference. Indeed, model parameters can be affected by high (estimation) uncertainty due to the sparsity of data. Independence between model parameters is a common assumption of GSA methods. However, ignoring (known) correlations between parameters may alter model predictions and, then, GSA results. To address this issue, a novel two-stages GSA technique based on the δ index, which is well-defined also in presence of correlated parameters, is here proposed. In the first step, statistical dependencies are neglected to identify parameters exerting causal effects. Correlations are introduced in the second step to consider the real distribution of the model output and investigate also the 'indirect' effects due to the correlation structure. The proposed two-stages GSA strategy was applied, as case study, to a preclinical tumor-in-host-growth inhibition model based on the Dynamic Energy Budget theory. The aim is to evaluate the impact of the model parameter estimate uncertainty (including correlations) on key model-derived metrics: the drug threshold concentration for tumor eradication, the tumor volume doubling time and a new index evaluating the drug efficacy-toxicity trade-off. This approach allowed to rank parameters according to their impact on the output, discerning whether a parameter mainly exerts a causal or 'indirect' effect. Thus, it was possible to identify uncertainties that should be necessarily reduced to obtain robust predictions for the outputs of interest.
全局敏感性分析(GSA)评估模型参数的变异性和/或不确定性对特定模型输出的影响。GSA 有助于评估药代动力学模型推断的质量。实际上,由于数据的稀疏性,模型参数可能会受到高(估计)不确定性的影响。模型参数之间的独立性是 GSA 方法的常见假设。然而,忽略(已知)参数之间的相关性可能会改变模型预测,进而改变 GSA 结果。为了解决这个问题,提出了一种基于 δ 指数的新型两阶段 GSA 技术,即使在相关参数存在的情况下,δ 指数也能得到很好的定义。在第一步中,忽略统计相关性以确定产生因果效应的参数。在第二步中引入相关性,以考虑模型输出的实际分布,并研究由于相关结构引起的“间接”效应。该两阶段 GSA 策略应用于基于动态能量预算理论的临床前肿瘤宿主生长抑制模型,作为案例研究。目的是评估模型参数估计不确定性(包括相关性)对关键模型衍生指标的影响:消除肿瘤的药物阈值浓度、肿瘤体积倍增时间和评估药物疗效-毒性权衡的新指标。该方法根据参数对输出的影响对参数进行排序,辨别参数主要是产生因果效应还是“间接”效应。因此,可以确定为了获得感兴趣的输出的稳健预测必须降低的不确定性。