计算病理学中的聚集方法聚合。

An aggregation of aggregation methods in computational pathology.

机构信息

Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK; School of Computing, National University of Computer and Emerging Sciences, Islamabad, Pakistan.

Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK.

出版信息

Med Image Anal. 2023 Aug;88:102885. doi: 10.1016/j.media.2023.102885. Epub 2023 Jun 29.

Abstract

Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods with a view to help guide future research in the area of computational pathology (CPath). We propose a general CPath workflow with three pathways that consider multiple levels and types of data and the nature of computation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and representation of the data, features of computational modules and CPath use cases. We compare and contrast different methods based on the principle of multiple instance learning, perhaps the most commonly used aggregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, some recommendations and possible future directions.

摘要

图像分析和机器学习算法在处理千兆像素的全玻片图像(WSI)时,通常会处理大量的瓦片(子图像),并且需要汇总瓦片的预测结果,以预测 WSI 级别的标签。在本文中,我们回顾了现有的关于各种聚合方法的文献,以期帮助指导计算病理学(CPath)领域的未来研究。我们提出了一个通用的 CPath 工作流程,其中包含三个路径,考虑了多个层次和类型的数据以及计算的性质,用于分析 WSI 以进行预测建模。我们根据数据的上下文和表示、计算模块的特征以及 CPath 用例对聚合方法进行分类。我们根据多实例学习的原理比较和对比了不同的方法,这可能是最常用的聚合方法,涵盖了广泛的 CPath 文献。为了进行公平比较,我们考虑了一个特定的 WSI 级预测任务,并比较了该任务的各种聚合方法。最后,我们总结了聚合方法的一般目标和理想属性、各种方法的优缺点、一些建议和可能的未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索