Suppr超能文献

基于迁移学习的结直肠癌病理诊断系统的开发与外部验证:一项大型模拟前瞻性研究

Development and external validation of a transfer learning-based system for the pathological diagnosis of colorectal cancer: a large emulated prospective study.

作者信息

Yuan Liuhong, Zhou Henghua, Xiao Xiao, Zhang Xiuqin, Chen Feier, Liu Lin, Liu Jingjia, Bao Shisan, Tao Kun

机构信息

Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

Department of Pathology, Tongren Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China.

出版信息

Front Oncol. 2024 Apr 25;14:1365364. doi: 10.3389/fonc.2024.1365364. eCollection 2024.

Abstract

BACKGROUND

The progress in Colorectal cancer (CRC) screening and management has resulted in an unprecedented caseload for histopathological diagnosis. While artificial intelligence (AI) presents a potential solution, the predominant emphasis on slide-level aggregation performance without thorough verification of cancer in each location, impedes both explainability and transparency. Effectively addressing these challenges is crucial to ensuring the reliability and efficacy of AI in histology applications.

METHOD

In this study, we created an innovative AI algorithm using transfer learning from a polyp segmentation model in endoscopy. The algorithm precisely localized CRC targets within 0.25 mm² grids from whole slide imaging (WSI). We assessed the CRC detection capabilities at this fine granularity and examined the influence of AI on the diagnostic behavior of pathologists. The evaluation utilized an extensive dataset comprising 858 consecutive patient cases with 1418 WSIs obtained from an external center.

RESULTS

Our results underscore a notable sensitivity of 90.25% and specificity of 96.60% at the grid level, accompanied by a commendable area under the curve (AUC) of 0.962. This translates to an impressive 99.39% sensitivity at the slide level, coupled with a negative likelihood ratio of <0.01, signifying the dependability of the AI system to preclude diagnostic considerations. The positive likelihood ratio of 26.54, surpassing 10 at the grid level, underscores the imperative for meticulous scrutiny of any AI-generated highlights. Consequently, all four participating pathologists demonstrated statistically significant diagnostic improvements with AI assistance.

CONCLUSION

Our transfer learning approach has successfully yielded an algorithm that can be validated for CRC histological localizations in whole slide imaging. The outcome advocates for the integration of the AI system into histopathological diagnosis, serving either as a diagnostic exclusion application or a computer-aided detection (CADe) tool. This integration has the potential to alleviate the workload of pathologists and ultimately benefit patients.

摘要

背景

结直肠癌(CRC)筛查和管理方面的进展导致组织病理学诊断的病例量达到前所未有的水平。虽然人工智能(AI)提供了一种潜在的解决方案,但主要侧重于玻片级别的汇总性能,而没有对每个位置的癌症进行彻底验证,这妨碍了可解释性和透明度。有效应对这些挑战对于确保AI在组织学应用中的可靠性和有效性至关重要。

方法

在本研究中,我们利用内镜息肉分割模型的迁移学习创建了一种创新的AI算法。该算法从全玻片成像(WSI)中精确地将CRC目标定位在0.25平方毫米的网格内。我们在这种精细粒度下评估了CRC检测能力,并研究了AI对病理学家诊断行为的影响。评估使用了一个广泛的数据集,该数据集包含从外部中心获得的858例连续患者病例的1418张WSI。

结果

我们的结果强调,在网格级别上,灵敏度显著为90.25%,特异性为96.60%,曲线下面积(AUC)值得称赞,为0.962。这意味着在玻片级别上灵敏度高达99.39%,阴性似然比<0.01,表明AI系统在排除诊断考虑方面的可靠性。阳性似然比为26.54,在网格级别上超过10,这突出了对任何AI生成的亮点进行细致审查的必要性。因此,所有四位参与的病理学家在AI辅助下均表现出统计学上显著的诊断改善。

结论

我们的迁移学习方法成功产生了一种算法,该算法可用于全玻片成像中CRC组织学定位的验证。这一结果主张将AI系统整合到组织病理学诊断中,既可以作为诊断排除应用,也可以作为计算机辅助检测(CADe)工具。这种整合有可能减轻病理学家的工作量,并最终使患者受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41f5/11079287/c8b1cc010289/fonc-14-1365364-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验