Suppr超能文献

全球和局部的交互、异质主体的简化模型。

Global and local reduced models for interacting, heterogeneous agents.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.

Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

Chaos. 2021 Jul;31(7):073139. doi: 10.1063/5.0055840.

Abstract

Large collections of coupled, heterogeneous agents can manifest complex dynamical behavior presenting difficulties for simulation and analysis. However, if the collective dynamics lie on a low-dimensional manifold, then the original agent-based model may be approximated with a simplified surrogate model on and near the low-dimensional space where the dynamics live. Analytically identifying such simplified models can be challenging or impossible, but here we present a data-driven coarse-graining methodology for discovering such reduced models. We consider two types of reduced models: globally based models that use global information and predict dynamics using information from the whole ensemble and locally based models that use local information, that is, information from just a subset of agents close (close in heterogeneity space, not physical space) to an agent, to predict the dynamics of an agent. For both approaches, we are able to learn laws governing the behavior of the reduced system on the low-dimensional manifold directly from time series of states from the agent-based system. These laws take the form of either a system of ordinary differential equations (ODEs), for the globally based approach, or a partial differential equation (PDE) in the locally based case. For each technique, we employ a specialized artificial neural network integrator that has been templated on an Euler time stepper (i.e., a ResNet) to learn the laws of the reduced model. As part of our methodology, we utilize the proper orthogonal decomposition (POD) to identify the low-dimensional space of the dynamics. Our globally based technique uses the resulting POD basis to define a set of coordinates for the agent states in this space and then seeks to learn the time evolution of these coordinates as a system of ODEs. For the locally based technique, we propose a methodology for learning a partial differential equation representation of the agents; the PDE law depends on the state variables and partial derivatives of the state variables with respect to model heterogeneities. We require that the state variables are smooth with respect to model heterogeneities, which permit us to cast the discrete agent-based problem as a continuous one in heterogeneity space. The agents in such a representation bear similarity to the discretization points used in typical finite element/volume methods. As an illustration of the efficacy of our techniques, we consider a simplified coupled neuron model for rhythmic oscillations in the pre-Bötzinger complex and demonstrate how our data-driven surrogate models are able to produce dynamics comparable to the dynamics of the full system. A nontrivial conclusion is that the dynamics can be equally well reproduced by an all-to-all coupled and by a locally coupled model of the same agents.

摘要

大量耦合的异质代理集合可以表现出复杂的动态行为,这给模拟和分析带来了困难。然而,如果集体动态位于低维流形上,那么原始基于代理的模型可以通过简化的替代模型来近似,该模型位于动态存在的低维空间上和附近。从分析上识别这样的简化模型可能具有挑战性或不可能,但是这里我们提出了一种用于发现这种简化模型的数据驱动的粗粒化方法。我们考虑两种类型的简化模型:基于全局的模型,它使用全局信息并使用来自整个集合的信息来预测动态;以及基于局部的模型,它使用局部信息,即仅来自与代理接近(在异质空间中接近,而不是物理空间中)的代理子集的信息来预测代理的动态。对于这两种方法,我们都能够从基于代理的系统的状态时间序列中直接学习简化系统在低维流形上的行为规律。这些规律采用系统的常微分方程(ODE)的形式,对于基于全局的方法,或者在基于局部的情况下采用偏微分方程(PDE)的形式。对于每种技术,我们都采用专门的人工神经网络积分器,该积分器基于欧拉时间推进器(即 ResNet)进行模板化,以学习简化模型的规律。作为我们方法的一部分,我们利用本征正交分解(POD)来识别动力学的低维空间。我们的基于全局的技术使用由此产生的 POD 基来定义此空间中代理状态的一组坐标,然后试图学习这些坐标的时间演化作为 ODE 系统。对于基于局部的技术,我们提出了一种学习代理的偏微分方程表示的方法;该 PDE 法则取决于状态变量和状态变量相对于模型异质性的偏导数。我们要求状态变量相对于模型异质性是平滑的,这使我们能够将离散的基于代理的问题转化为异质空间中的连续问题。这样的表示中的代理与典型的有限元/体积方法中使用的离散化点具有相似性。作为我们技术的有效性的说明,我们考虑了一个简化的耦合神经元模型,用于前 Bötzinger 复合体中的节律性振荡,并展示了我们的数据驱动的替代模型如何能够产生与完整系统的动态相当的动态。一个重要的结论是,相同代理的全连接和局部连接模型都可以同样很好地再现动力学。

相似文献

2
Emergent Spaces for Coupled Oscillators.耦合振荡器的涌现空间。
Front Comput Neurosci. 2020 May 12;14:36. doi: 10.3389/fncom.2020.00036. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验