Pruitt Emily L, Zhang Rutan, Ross Dylan H, Ashford Nathaniel K, Chen Xi, Alonzo Francis, Bush Matthew F, Werth Brian J, Xu Libin
Department of Chemistry, University of Washington, Seattle, Washington, USA.
Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA.
bioRxiv. 2023 Jun 30:2023.06.29.547085. doi: 10.1101/2023.06.29.547085.
only synthesizes straight-chain or branched-chain saturated fatty acids (SCFAs or BCFAs) via the type II fatty acid synthesis (FASII) pathway, but as a highly adaptive pathogen, can also utilize host-derived exogenous fatty acids (eFAs), including SCFAs and unsaturated fatty acids (UFAs). secretes three lipases, Geh, sal1, and SAUSA300_0641, which could perform the function of releasing fatty acids from host lipids. Once released, the FAs are phosphorylated by the fatty acid kinase, FakA, and incorporated into the bacterial lipids. In this study, we determined the substrate specificity of secreted lipases, the effect of human serum albumin (HSA) on eFA incorporation, and the effect of FASII inhibitor, AFN-1252, on eFA incorporation using comprehensive lipidomics. When grown with major donors of fatty acids, cholesteryl esters (CEs) and triglycerides (TGs), Geh was found to be the primary lipase responsible for hydrolyzing CEs, but other lipases could compensate for the function of Geh in hydrolyzing TGs. Lipidomics showed that eFAs were incorporated into all major lipid classes and that fatty acid-containing HSA can serve as a source of eFAs. Furthermore, grown with UFAs displayed decreased membrane fluidity and increased production of reactive oxygen species (ROS). Exposure to AFN-1252 enhanced UFAs in the bacterial membrane, even without a source of eFAs, indicating a FASII pathway modification. Thus, the incorporation of eFAs alters the lipidome, membrane fluidity, and ROS formation, which could affect host-pathogen interactions and susceptibility to membrane-targeting antimicrobials.
仅通过II型脂肪酸合成(FASII)途径合成直链或支链饱和脂肪酸(短链脂肪酸或支链脂肪酸),但作为一种高度适应性的病原体,它也可以利用宿主来源的外源性脂肪酸(eFAs),包括短链脂肪酸和不饱和脂肪酸(UFAs)。它分泌三种脂肪酶,Geh、sal1和SAUSA300_0641,这些脂肪酶可以发挥从宿主脂质中释放脂肪酸的功能。一旦释放,脂肪酸就会被脂肪酸激酶FakA磷酸化,并掺入细菌脂质中。在本研究中,我们使用综合脂质组学确定了分泌型脂肪酶的底物特异性、人血清白蛋白(HSA)对eFA掺入的影响以及FASII抑制剂AFN-1252对eFA掺入的影响。当与脂肪酸的主要供体胆固醇酯(CEs)和甘油三酯(TGs)一起生长时,发现Geh是负责水解CEs的主要脂肪酶,但其他脂肪酶可以补偿Geh在水解TGs方面的功能。脂质组学表明,eFAs被掺入所有主要脂质类别中,并且含脂肪酸的HSA可以作为eFAs的来源。此外,与不饱和脂肪酸一起生长时,其膜流动性降低,活性氧(ROS)的产生增加。暴露于AFN-1252会增加细菌膜中的不饱和脂肪酸,即使没有eFAs来源,这表明FASII途径发生了改变。因此,eFAs的掺入改变了脂质组、膜流动性和ROS形成,这可能会影响宿主-病原体相互作用以及对靶向膜的抗菌药物的敏感性。