Suppr超能文献

利用外源直链不饱和脂肪酸进行低温同源适应的脂类组学研究

Lipidomics of homeoviscous adaptation to low temperatures in utilizing exogenous straight-chain unsaturated fatty acids.

机构信息

School of Biological Sciences, Illinois State University, Normal, Illinois, USA.

Department of Chemistry, University of Georgia, Athens, Georgia, USA.

出版信息

J Bacteriol. 2024 Jul 25;206(7):e0018724. doi: 10.1128/jb.00187-24. Epub 2024 Jul 2.

Abstract

UNLABELLED

It is well established that can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media and when growing during infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain, supported by the fact that the incorporation of C18:1Δ9 into the membrane increased membrane fluidity in both strains. We show that the incorporation of C18:1Δ9 and its elongation product C20:1Δ11 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol and diglycosyldiacylglycerol lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin. The enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms.

IMPORTANCE

We show that can use its known ability to incorporate exogenous fatty acids to enhance its growth at low temperatures. Individual species of phosphatidylglycerols and diglycosyldiacylglycerols bearing one or two degrees of unsaturation derived from the incorporation of C18:1Δ9 at 12°C are described for the first time. In addition, enhanced production of the carotenoid staphyloxanthin occurs at low temperatures. The studies describe a biochemical reality underlying membrane biophysics. This is an example of homeoviscous adaptation to low temperatures utilizing exogenous fatty acids over the regulation of the biosynthesis of endogenous fatty acids. The studies have likely relevance to food safety in that unsaturated fatty acids may enhance the growth of in the food environment.

摘要

未加标签

众所周知,[细菌名称]可以将外源性直链不饱和脂肪酸(SCUFA)掺入补充培养基中的膜磷酯和糖脂中,并在感染期间生长。鉴于油酸(C18:1Δ9)掺入脂质时会增强膜流动性,我们促使检查用 C18:1Δ9 补充培养基对低温下生长的影响。C18:1Δ9 支持在 12°C 下生长的冷敏感支链脂肪酸(BCFA)缺陷突变体。有趣的是,我们在 BCFA 充足的亲本菌株中发现了类似的结果,这一事实支持了 C18:1Δ9 掺入膜中会增加两种菌株膜流动性的观点。我们表明,C18:1Δ9 及其延伸产物 C20:1Δ11 掺入膜脂质对于生长刺激是必需的,并且依赖于功能性 FakAB 掺入系统。磷脂酰甘油和双糖基二酰甘油脂质类别的脂质组学分析显示 C18:1Δ9 和温度对脂质种类有重大影响。在存在 C18:1Δ9 的情况下于 12°C 下生长也导致了类胡萝卜素色素番茄红素的产量增加。C18:1Δ9 增强生长是利用外源性脂肪酸进行低温同源粘性适应的一个例子。在食物中,这可能对[细菌名称]在低温下的生长很重要,因为食物中通常以各种形式含有 C18:1Δ9 和其他 SCUFA。

重要性

我们表明,[细菌名称]可以利用其已知的外源性脂肪酸掺入能力来增强其在低温下的生长。描述了在 12°C 时,源自 C18:1Δ9 掺入的具有一个或两个不饱和度的单个磷脂酰甘油和双糖基二酰甘油的种属。此外,在低温下会增强类胡萝卜素番茄红素的产生。该研究描述了膜生物物理学背后的生化现实。这是利用外源性脂肪酸进行低温同源粘性适应的一个例子,而不是通过调节内源性脂肪酸的生物合成来进行。这些研究可能与食品安全有关,因为不饱和脂肪酸可能会增强[细菌名称]在食品环境中的生长。

相似文献

1
Lipidomics of homeoviscous adaptation to low temperatures in utilizing exogenous straight-chain unsaturated fatty acids.
J Bacteriol. 2024 Jul 25;206(7):e0018724. doi: 10.1128/jb.00187-24. Epub 2024 Jul 2.
6
Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus.
J Bacteriol. 2012 Oct;194(19):5294-304. doi: 10.1128/JB.00743-12. Epub 2012 Jul 27.
7
Impact of Deficiencies in Branched-Chain Fatty Acids and Staphyloxanthin in .
Biomed Res Int. 2019 Jan 22;2019:2603435. doi: 10.1155/2019/2603435. eCollection 2019.
9
Growth of Staphylococcus aureus in the presence of oleic acid shifts the glycolipid fatty acid profile and increases resistance to antimicrobial peptides.
Biochim Biophys Acta Biomembr. 2025 Jan;1867(1):184395. doi: 10.1016/j.bbamem.2024.184395. Epub 2024 Nov 3.
10
Defective contributes to increased membrane fluidity and cell wall thickening in with high-level daptomycin resistance.
mSphere. 2024 Jun 25;9(6):e0011524. doi: 10.1128/msphere.00115-24. Epub 2024 May 16.

引用本文的文献

2
Alkyl Pyridinol Compounds Exhibit Antimicrobial Effects against Gram-Positive Bacteria.
Antibiotics (Basel). 2024 Sep 20;13(9):897. doi: 10.3390/antibiotics13090897.

本文引用的文献

1
The role of staphyloxanthin in the regulation of membrane biophysical properties in Staphylococcus aureus.
Biochim Biophys Acta Biomembr. 2024 Mar;1866(3):184288. doi: 10.1016/j.bbamem.2024.184288. Epub 2024 Jan 28.
2
Variable staphyloxanthin production by Staphylococcus aureus drives strain-dependent effects on diabetic wound-healing outcomes.
Cell Rep. 2023 Oct 31;42(10):113281. doi: 10.1016/j.celrep.2023.113281. Epub 2023 Oct 19.
3
A rapid single-phase extraction for polar staphylococcal lipids.
Anal Bioanal Chem. 2023 Jul;415(18):4591-4602. doi: 10.1007/s00216-023-04758-9. Epub 2023 Jun 1.
5
Exogenous fatty acids affect membrane properties and cold adaptation of Listeria monocytogenes.
Sci Rep. 2022 Jan 27;12(1):1499. doi: 10.1038/s41598-022-05548-6.
6
Oleate Hydratase (OhyA) Is a Virulence Determinant in Staphylococcus aureus.
Microbiol Spectr. 2021 Dec 22;9(3):e0154621. doi: 10.1128/Spectrum.01546-21. Epub 2021 Nov 24.
7
Revealing Fatty Acid Heterogeneity in Staphylococcal Lipids with Isotope Labeling and RPLC-IM-MS.
J Am Soc Mass Spectrom. 2021 Sep 1;32(9):2376-2385. doi: 10.1021/jasms.1c00092. Epub 2021 May 20.
8
adapts to the host nutritional landscape to overcome tissue-specific branched-chain fatty acid requirement.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2022720118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验