Shaban Muhammad, Bai Yunhao, Qiu Huaying, Mao Shulin, Yeung Jason, Yeo Yao Yu, Shanmugam Vignesh, Chen Han, Zhu Bokai, Nolan Garry P, Shipp Margaret A, Rodig Scott J, Jiang Sizun, Mahmood Faisal
Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
bioRxiv. 2023 Jun 27:2023.06.25.546474. doi: 10.1101/2023.06.25.546474.
Highly multiplexed protein imaging is emerging as a potent technique for analyzing protein distribution within cells and tissues in their native context. However, existing cell annotation methods utilizing high-plex spatial proteomics data are resource intensive and necessitate iterative expert input, thereby constraining their scalability and practicality for extensive datasets. We introduce MAPS (Machine learning for Analysis of Proteomics in Spatial biology), a machine learning approach facilitating rapid and precise cell type identification with human-level accuracy from spatial proteomics data. Validated on multiple in-house and publicly available MIBI and CODEX datasets, MAPS outperforms current annotation techniques in terms of speed and accuracy, achieving pathologist-level precision even for challenging cell types, including tumor cells of immune origin. By democratizing rapidly deployable and scalable machine learning annotation, MAPS holds significant potential to expedite advances in tissue biology and disease comprehension.
高度多重化蛋白质成像正在成为一种强大的技术,用于在细胞和组织的天然环境中分析蛋白质分布。然而,现有的利用高多重空间蛋白质组学数据的细胞注释方法资源密集,需要反复的专家输入,从而限制了它们对大量数据集的可扩展性和实用性。我们引入了MAPS(空间生物学蛋白质组学分析的机器学习方法),这是一种机器学习方法,能够从空间蛋白质组学数据中以人类水平的准确性快速精确地识别细胞类型。在多个内部和公开可用的MIBI和CODEX数据集上得到验证,MAPS在速度和准确性方面优于当前的注释技术,即使对于具有挑战性的细胞类型,包括免疫起源的肿瘤细胞,也能达到病理学家级别的精度。通过使快速可部署和可扩展的机器学习注释民主化,MAPS具有加速组织生物学进展和疾病理解的巨大潜力。