Suppr超能文献

MAPS:通过机器学习从组织图像中进行病理学家级别的细胞类型注释。

MAPS: Pathologist-level cell type annotation from tissue images through machine learning.

作者信息

Shaban Muhammad, Bai Yunhao, Qiu Huaying, Mao Shulin, Yeung Jason, Yeo Yao Yu, Shanmugam Vignesh, Chen Han, Zhu Bokai, Nolan Garry P, Shipp Margaret A, Rodig Scott J, Jiang Sizun, Mahmood Faisal

机构信息

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.

Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

出版信息

bioRxiv. 2023 Jun 27:2023.06.25.546474. doi: 10.1101/2023.06.25.546474.

Abstract

Highly multiplexed protein imaging is emerging as a potent technique for analyzing protein distribution within cells and tissues in their native context. However, existing cell annotation methods utilizing high-plex spatial proteomics data are resource intensive and necessitate iterative expert input, thereby constraining their scalability and practicality for extensive datasets. We introduce MAPS (Machine learning for Analysis of Proteomics in Spatial biology), a machine learning approach facilitating rapid and precise cell type identification with human-level accuracy from spatial proteomics data. Validated on multiple in-house and publicly available MIBI and CODEX datasets, MAPS outperforms current annotation techniques in terms of speed and accuracy, achieving pathologist-level precision even for challenging cell types, including tumor cells of immune origin. By democratizing rapidly deployable and scalable machine learning annotation, MAPS holds significant potential to expedite advances in tissue biology and disease comprehension.

摘要

高度多重化蛋白质成像正在成为一种强大的技术,用于在细胞和组织的天然环境中分析蛋白质分布。然而,现有的利用高多重空间蛋白质组学数据的细胞注释方法资源密集,需要反复的专家输入,从而限制了它们对大量数据集的可扩展性和实用性。我们引入了MAPS(空间生物学蛋白质组学分析的机器学习方法),这是一种机器学习方法,能够从空间蛋白质组学数据中以人类水平的准确性快速精确地识别细胞类型。在多个内部和公开可用的MIBI和CODEX数据集上得到验证,MAPS在速度和准确性方面优于当前的注释技术,即使对于具有挑战性的细胞类型,包括免疫起源的肿瘤细胞,也能达到病理学家级别的精度。通过使快速可部署和可扩展的机器学习注释民主化,MAPS具有加速组织生物学进展和疾病理解的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b8/10327211/4d723fee7133/nihpp-2023.06.25.546474v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验