Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Nat Commun. 2024 Jan 2;15(1):28. doi: 10.1038/s41467-023-44188-w.
Highly multiplexed protein imaging is emerging as a potent technique for analyzing protein distribution within cells and tissues in their native context. However, existing cell annotation methods utilizing high-plex spatial proteomics data are resource intensive and necessitate iterative expert input, thereby constraining their scalability and practicality for extensive datasets. We introduce MAPS (Machine learning for Analysis of Proteomics in Spatial biology), a machine learning approach facilitating rapid and precise cell type identification with human-level accuracy from spatial proteomics data. Validated on multiple in-house and publicly available MIBI and CODEX datasets, MAPS outperforms current annotation techniques in terms of speed and accuracy, achieving pathologist-level precision even for typically challenging cell types, including tumor cells of immune origin. By democratizing rapidly deployable and scalable machine learning annotation, MAPS holds significant potential to expedite advances in tissue biology and disease comprehension.
高多重蛋白成像技术正在兴起,成为分析细胞内和组织中蛋白质在天然环境中分布的有力工具。然而,现有的利用高多重空间蛋白质组学数据的细胞注释方法需要大量的资源,并需要迭代的专家输入,因此限制了它们在广泛数据集上的可扩展性和实用性。我们引入了 MAPS(空间生物学中蛋白质组学分析的机器学习),这是一种机器学习方法,可以从空间蛋白质组学数据中快速准确地识别细胞类型,准确率达到人类水平。在多个内部和公开的 MIBI 和 CODEX 数据集上进行验证,MAPS 在速度和准确性方面均优于现有注释技术,即使对于通常具有挑战性的细胞类型(包括免疫来源的肿瘤细胞),也能达到病理学家级别的精度。通过使快速部署和可扩展的机器学习注释民主化,MAPS 具有加速组织生物学和疾病理解进展的巨大潜力。