Suppr超能文献

医疗病房危重病事件的时间聚类。

Temporal Clustering of Critical Illness Events on Medical Wards.

机构信息

General Internal Medicine and Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.

Department of Medicine, University of Toronto, Toronto, Ontario, Canada.

出版信息

JAMA Intern Med. 2023 Sep 1;183(9):924-932. doi: 10.1001/jamainternmed.2023.2629.

Abstract

IMPORTANCE

Recognizing and preventing patient deterioration is important for hospital safety.

OBJECTIVE

To investigate whether critical illness events (in-hospital death or intensive care unit [ICU] transfer) are associated with greater risk of subsequent critical illness events for other patients on the same medical ward.

DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study in 5 hospitals in Toronto, Canada, including 118 529 hospitalizations. Patients were admitted to general internal medicine wards between April 1, 2010, and October 31, 2017. Data were analyzed between January 1, 2020, and April 10, 2023.

EXPOSURES

Critical illness events (in-hospital death or ICU transfer).

MAIN OUTCOMES AND MEASURES

The primary outcome was the composite of in-hospital death or ICU transfer. The association between critical illness events on the same ward across 6-hour intervals was studied using discrete-time survival analysis, adjusting for patient and situational factors. The association between critical illness events on different comparable wards in the same hospital was measured as a negative control.

RESULTS

The cohort included 118 529 hospitalizations (median age, 72 years [IQR, 56-83 years]; 50.7% male). Death or ICU transfer occurred in 8785 hospitalizations (7.4%). Patients were more likely to experience the primary outcome after exposure to 1 prior event (adjusted odds ratio [AOR], 1.39; 95% CI, 1.30-1.48) and more than 1 prior event (AOR, 1.49; 95% CI, 1.33-1.68) in the prior 6-hour interval compared with no exposure. The exposure was associated with increased odds of subsequent ICU transfer (1 event: AOR, 1.67; 95% CI, 1.54-1.81; >1 event: AOR, 2.05; 95% CI, 1.79-2.36) but not death alone (1 event: AOR, 1.08; 95% CI, 0.97-1.19; >1 event: AOR, 0.88; 95% CI, 0.71-1.09). There was no significant association between critical illness events on different wards within the same hospital.

CONCLUSIONS AND RELEVANCE

Findings of this cohort study suggest that patients are more likely to be transferred to the ICU in the hours after another patient's critical illness event on the same ward. This phenomenon could have several explanations, including increased recognition of critical illness and preemptive ICU transfers, resource diversion to the first event, or fluctuations in ward or ICU capacity. Patient safety may be improved by better understanding the clustering of ICU transfers on medical wards.

摘要

重要性

识别和预防患者病情恶化对医院安全很重要。

目的

研究重症事件(院内死亡或转入重症监护病房[ICU])是否与同一医疗病房的其他患者随后发生重症事件的风险增加有关。

设计、地点和参与者:这是一项在加拿大多伦多的 5 家医院进行的回顾性队列研究,共纳入 118529 例住院患者。患者于 2010 年 4 月 1 日至 2017 年 10 月 31 日期间被收入普通内科病房。数据于 2020 年 1 月 1 日至 2023 年 4 月 10 日进行分析。

暴露因素

重症事件(院内死亡或 ICU 转科)。

主要结局和措施

主要结局是院内死亡或 ICU 转科的复合结局。使用离散时间生存分析研究了 6 小时间隔内同一病房的重症事件之间的关联,并根据患者和情况因素进行了调整。在同一医院的不同可比病房中,重症事件之间的关联被测量为阴性对照。

结果

该队列纳入了 118529 例住院患者(中位年龄 72 岁[IQR,56-83 岁];50.7%为男性)。8785 例住院患者(7.4%)发生了死亡或 ICU 转科。与无暴露相比,在前 6 小时间隔内暴露于 1 次先前事件(调整后优势比[OR],1.39;95%CI,1.30-1.48)和多次先前事件(OR,1.49;95%CI,1.33-1.68)的患者更有可能发生主要结局。暴露与随后 ICU 转科的几率增加有关(1 次事件:OR,1.67;95%CI,1.54-1.81;多次事件:OR,2.05;95%CI,1.79-2.36),但与单独死亡无关(1 次事件:OR,1.08;95%CI,0.97-1.19;多次事件:OR,0.88;95%CI,0.71-1.09)。同一医院内不同病房的重症事件之间没有显著关联。

结论和相关性

这项队列研究的结果表明,在同一病房的另一名患者发生重症事件后的数小时内,患者更有可能被转入 ICU。这种现象可能有多种解释,包括对重症的识别增加和预防性 ICU 转科、资源转移到第一个事件、或病房或 ICU 容量的波动。通过更好地了解 ICU 转科在医疗病房中的聚集情况,可能会提高患者安全性。

相似文献

1
Temporal Clustering of Critical Illness Events on Medical Wards.医疗病房危重病事件的时间聚类。
JAMA Intern Med. 2023 Sep 1;183(9):924-932. doi: 10.1001/jamainternmed.2023.2629.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验