Suppr超能文献

人工智能方法在药物研发全流程中生成 MIDD 资产。

An AI Approach to Generating MIDD Assets Across the Drug Development Continuum.

机构信息

Aridhia Bioinformatics, 163 Bath Street, Glasgow, Scotland, G2 4SQ, UK.

Center for Translational Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA.

出版信息

AAPS J. 2023 Jul 10;25(4):70. doi: 10.1208/s12248-023-00838-x.

Abstract

Model-informed drug development involves developing and applying exposure-based, biological, and statistical models derived from preclinical and clinical data sources to inform drug development and decision-making. Discrete models are generated from individual experiments resulting in a single model expression that is utilized to inform a single stage-gate decision. Other model types provide a more holistic view of disease biology and potentially disease progression depending on the appropriateness of the underlying data sources for that purpose. Despite this awareness, most data integration and model development approaches are still reliant on internal (within company) data stores and traditional structural model types. An AI/ML-based MIDD approach relies on more diverse data and is informed by past successes and failures including data outside a host company (external data sources) that may enhance predictive value and enhance data generated by the sponsor to reflect more informed and timely experimentation. The AI/ML methodology also provides a complementary approach to more traditional modeling efforts that support MIDD and thus yields greater fidelity in decision-making. Early pilot studies support this assessment but will require broader adoption and regulatory support for more evidence and refinement of this paradigm. An AI/ML-based approach to MIDD has the potential to transform regulatory science and the current drug development paradigm, optimize information value, and increase candidate and eventually product confidence with respect to safety and efficacy. We highlight early experiences with this approach using the AI compute platforms as representative examples of how MIDD can be facilitated with an AI/ML approach.

摘要

模型引导药物研发涉及开发和应用基于暴露量、生物学和统计学的模型,这些模型源自临床前和临床数据资源,用于为药物研发和决策提供信息。离散模型是从单个实验中生成的,导致产生单个模型表达,用于为单个阶段门决策提供信息。其他模型类型提供了对疾病生物学的更全面的了解,并且根据该目的的基础数据源的适当性,可能提供对疾病进展的更全面了解。尽管有这种认识,但大多数数据集成和模型开发方法仍然依赖于内部(公司内部)数据存储和传统结构模型类型。基于人工智能/机器学习的 MIDD 方法依赖于更多样化的数据,并受到过去的成功和失败的影响,包括宿主公司以外的数据(外部数据源),这些数据可能会提高预测价值,并增强赞助商生成的数据,以反映更明智和及时的实验。人工智能/机器学习方法还为更传统的建模工作提供了一种补充方法,支持 MIDD,从而在决策中实现更高的保真度。早期试点研究支持这一评估,但需要更广泛地采用和监管支持,以获得更多证据并完善这一模式。基于人工智能/机器学习的 MIDD 方法有可能改变监管科学和当前的药物开发模式,优化信息价值,并提高候选药物和最终产品的安全性和疗效信心。我们使用 AI 计算平台来突出展示这种方法的早期经验,以说明如何通过人工智能/机器学习方法来促进 MIDD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验