Suppr超能文献

社交媒体网络中网络欺凌的站点不可知早期检测方法

Site Agnostic Approach to Early Detection of Cyberbullying on Social Media Networks.

机构信息

CITIC Research Center, Computer Science and Information Technologies Department, Campus de Elviña, 15071 A Coruña, Spain.

Aix Marseille University, Université de Toulon, CNRS, LIS, Ecole Centrale Marseille, 13397 Marseille, France.

出版信息

Sensors (Basel). 2023 May 16;23(10):4788. doi: 10.3390/s23104788.

Abstract

The rise in the use of social media networks has increased the prevalence of cyberbullying, and time is paramount to reduce the negative effects that derive from those behaviours on any social media platform. This paper aims to study the early detection problem from a general perspective by carrying out experiments over two independent datasets (Instagram and Vine), exclusively using users' comments. We used textual information from comments over baseline early detection models (fixed, threshold, and dual models) to apply three different methods of improving early detection. First, we evaluated the performance of Doc2Vec features. Finally, we also presented multiple instance learning (MIL) on early detection models and we assessed its performance. We applied timeawareprecision (TaP) as an early detection metric to asses the performance of the presented methods. We conclude that the inclusion of Doc2Vec features improves the performance of baseline early detection models by up to 79.6%. Moreover, multiple instance learning shows an important positive effect for the Vine dataset, where smaller post sizes and less use of the English language are present, with a further improvement of up to 13%, but no significant enhancement is shown for the Instagram dataset.

摘要

社交媒体网络的使用增加了网络欺凌的盛行,而时间对于减少这些行为在任何社交媒体平台上产生的负面影响至关重要。本文旨在通过在两个独立的数据集(Instagram 和 Vine)上进行实验,从一般角度研究早期检测问题,仅使用用户的评论。我们使用评论中的文本信息来改进基线早期检测模型(固定、阈值和双模型),以应用三种不同的早期检测改进方法。首先,我们评估了 Doc2Vec 特征的性能。最后,我们还在早期检测模型上应用了多实例学习(MIL),并评估了它的性能。我们应用了时间感知精度(TaP)作为早期检测指标来评估所提出方法的性能。我们的结论是,Doc2Vec 特征的加入最多可以将基线早期检测模型的性能提高 79.6%。此外,多实例学习对 Vine 数据集显示出重要的积极影响,因为 Vine 数据集的帖子较小,英语使用较少,进一步提高了 13%,但对 Instagram 数据集没有显示出显著的增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/10224000/1efbe2dd9eba/sensors-23-04788-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验