Suppr超能文献

GraphKM:用于野生型和突变酶 K 预测的机器学习和深度学习。

GraphKM: machine and deep learning for K prediction of wildtype and mutant enzymes.

机构信息

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.

出版信息

BMC Bioinformatics. 2024 Mar 28;25(1):135. doi: 10.1186/s12859-024-05746-1.

Abstract

Michaelis constant (K) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K are difficult and time-consuming, prediction of the K values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K prediction models, we collected an independent K dataset (HXKm) from literatures.

摘要

米氏常数(K)是蛋白质工程、酶工程和合成生物学领域酶动力学的重要参数之一。由于大量的实验测量 K 值既困难又耗时,因此通过机器学习和深度学习模型来预测 K 值将加快酶动力学研究的速度。现有的机器学习和深度学习模型仅限于特定的酶,即少数酶或野生型酶。在这里,我们使用深度学习框架 PaddlePaddle 实现了一种用于野生型和突变型酶 K 值预测的机器学习和深度学习方法(GraphKM)。GraphKM 由图神经网络(GNN)、全连接层和梯度提升框架组成。我们通过分子图表示底物,通过基于预训练的转换器的语言模型表示酶,以构建模型输入。我们比较了不同 GNN(GIN、GAT、GCN 和 GAT-GCN)模型结果的差异。基于 GAT-GCN 的模型表现通常更好。为了评估 GraphKM 和其他报道的 K 值预测模型的预测性能,我们从文献中收集了一个独立的 K 值数据集(HXKm)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f31/10979596/5639e32f9482/12859_2024_5746_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验