Suppr超能文献

基于强化学习的多射频系统鲁棒资源管理。

Reinforcement-Learning-Based Robust Resource Management for Multi-Radio Systems.

机构信息

Manufacturing, Materials and Mechatronics, School of Engineering, STEM College, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia.

出版信息

Sensors (Basel). 2023 May 17;23(10):4821. doi: 10.3390/s23104821.

Abstract

The advent of the Internet of Things (IoT) has triggered an increased demand for sensing devices with multiple integrated wireless transceivers. These platforms often support the advantageous use of multiple radio technologies to exploit their differing characteristics. Intelligent radio selection techniques allow these systems to become highly adaptive, ensuring more robust and reliable communications under dynamic channel conditions. In this paper, we focus on the wireless links between devices equipped by deployed operating personnel and intermediary access-point infrastructure. We use multi-radio platforms and wireless devices with multiple and diverse transceiver technologies to produce robust and reliable links through the adaptive control of available transceivers. In this work, the term 'robust' refers to communications that can be maintained despite changes in the environmental and radio conditions, i.e., during periods of interference caused by non-cooperative actors or multi-path or fading conditions in the physical environment. In this paper, a multi-objective reinforcement learning (MORL) framework is applied to address a multi-radio selection and power control problem. We propose independent reward functions to manage the trade-off between the conflicting objectives of minimised power consumption and maximised bit rate. We also adopt an adaptive exploration strategy for learning a robust behaviour policy and compare its online performance to conventional methods. An extension to the multi-objective state-action-reward-state-action (SARSA) algorithm is proposed to implement this adaptive exploration strategy. When applying adaptive exploration to the extended multi-objective SARSA algorithm, we achieve a 20% increase in the F1 score in comparison to one with decayed exploration policies.

摘要

物联网 (IoT) 的出现引发了对具有多个集成无线收发器的传感设备的需求增长。这些平台通常支持多种无线电技术的有利利用,以利用它们不同的特性。智能无线电选择技术允许这些系统具有高度适应性,确保在动态信道条件下实现更稳健和可靠的通信。在本文中,我们专注于配备有部署操作人员和中间接入点基础设施的设备之间的无线链路。我们使用多无线电平台和具有多个不同收发器技术的无线设备,通过对可用收发器的自适应控制来生成稳健可靠的链路。在这项工作中,“稳健”一词是指即使在环境和无线电条件发生变化的情况下,即非合作行为者引起的干扰或物理环境中的多径或衰落条件期间,也能保持通信。在本文中,应用多目标强化学习 (MORL) 框架来解决多无线电选择和功率控制问题。我们提出了独立的奖励函数来管理最小化功耗和最大化比特率这两个冲突目标之间的权衡。我们还采用了自适应探索策略来学习稳健的行为策略,并将其在线性能与传统方法进行比较。提出了一种扩展的多目标状态-动作-奖励-状态-动作 (SARSA) 算法来实现这种自适应探索策略。在将自适应探索应用于扩展的多目标 SARSA 算法时,与使用衰减探索策略相比,我们的 F1 得分提高了 20%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70b5/10223095/75ecd987db42/sensors-23-04821-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验