Department of Statistical Science, Duke University, Durham, North Carolina, USA.
Department of Statistics, The Wharton School of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Biometrics. 2023 Dec;79(4):2987-2997. doi: 10.1111/biom.13901. Epub 2023 Jul 10.
The transmission rate is a central parameter in mathematical models of infectious disease. Its pivotal role in outbreak dynamics makes estimating the current transmission rate and uncovering its dependence on relevant covariates a core challenge in epidemiological research as well as public health policy evaluation. Here, we develop a method for flexibly inferring a time-varying transmission rate parameter, modeled as a function of covariates and a smooth Gaussian process (GP). The transmission rate model is further embedded in a hierarchy to allow information borrowing across parallel streams of regional incidence data. Crucially, the method makes use of optional vaccination data as a first step toward modeling of endemic infectious diseases. Computational techniques borrowed from the Bayesian spatial analysis literature enable fast and reliable posterior computation. Simulation studies reveal that the method recovers true covariate effects at nominal coverage levels. We analyze data from the COVID-19 pandemic and validate forecast intervals on held-out data. User-friendly software is provided to enable practitioners to easily deploy the method in public health research.
传播率是传染病数学模型中的一个核心参数。它在疫情动态中的关键作用使得估计当前的传播率并揭示其与相关协变量的依赖关系成为流行病学研究以及公共卫生政策评估的核心挑战。在这里,我们开发了一种灵活推断时变传播率参数的方法,该参数建模为协变量和光滑高斯过程 (GP) 的函数。传播率模型进一步嵌入到层次结构中,以允许在平行的区域发病率数据流之间进行信息借用。至关重要的是,该方法利用可选的疫苗接种数据作为对地方性传染病进行建模的第一步。从贝叶斯空间分析文献中借鉴的计算技术可实现快速可靠的后验计算。模拟研究表明,该方法在名义覆盖水平上恢复了真实的协变量效应。我们分析了 COVID-19 大流行的数据,并对保留数据进行了预测区间验证。提供了用户友好的软件,使从业者能够轻松地将该方法应用于公共卫生研究。