Suppr超能文献

半参数贝叶斯推断在具有状态空间模型的 COVID-19 传播动力学中的应用。

Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model.

机构信息

Department of Statistics, Colorado State University, 851 Oval Dr, Fort Collins, CO 80523-1877, USA.

Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.

出版信息

Contemp Clin Trials. 2020 Oct;97:106146. doi: 10.1016/j.cct.2020.106146. Epub 2020 Sep 15.

Abstract

The outbreak of Coronavirus Disease 2019 (COVID-19) is an ongoing pandemic affecting over 200 countries and regions. Inference about the transmission dynamics of COVID-19 can provide important insights into the speed of disease spread and the effects of mitigation policies. We develop a novel Bayesian approach to such inference based on a probabilistic compartmental model using data of daily confirmed COVID-19 cases. In particular, we consider a probabilistic extension of the classical susceptible-infectious-recovered model, which takes into account undocumented infections and allows the epidemiological parameters to vary over time. We estimate the disease transmission rate via a Gaussian process prior, which captures nonlinear changes over time without the need of specific parametric assumptions. We utilize a parallel-tempering Markov chain Monte Carlo algorithm to efficiently sample from the highly correlated posterior space. Predictions for future observations are done by sampling from their posterior predictive distributions. Performance of the proposed approach is assessed using simulated datasets. Finally, our approach is applied to COVID-19 data from six states of the United States: Washington, New York, California, Florida, Texas, and Illinois. An R package BaySIR is made available at https://github.com/tianjianzhou/BaySIR for the public to conduct independent analysis or reproduce the results in this paper.

摘要

2019 年冠状病毒病(COVID-19)的爆发是一场持续的大流行,影响了 200 多个国家和地区。对 COVID-19 传播动态的推断可以为疾病传播速度和缓解政策的效果提供重要的见解。我们基于使用每日确诊 COVID-19 病例数据的概率分区模型,开发了一种新颖的贝叶斯方法来进行这种推断。具体来说,我们考虑了经典的易感染-感染-恢复模型的概率扩展,该模型考虑了未记录的感染,并允许流行病学参数随时间变化。我们通过高斯过程先验来估计疾病传播率,该先验可以在不需要特定参数假设的情况下捕获随时间的非线性变化。我们利用并行调温马尔可夫链蒙特卡罗算法来有效地从高度相关的后验空间中采样。通过从其后验预测分布中采样来进行对未来观测的预测。使用模拟数据集评估了所提出方法的性能。最后,我们的方法应用于来自美国六个州的 COVID-19 数据:华盛顿、纽约、加利福尼亚、佛罗里达、得克萨斯和伊利诺伊。R 包 BaySIR 可在 https://github.com/tianjianzhou/BaySIR 上获得,供公众进行独立分析或重现本文中的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e327/7491370/3ea4338a3dcc/gr1_lrg.jpg

相似文献

1
Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model.
Contemp Clin Trials. 2020 Oct;97:106146. doi: 10.1016/j.cct.2020.106146. Epub 2020 Sep 15.
2
Bayesian inference for the onset time and epidemiological characteristics of emerging infectious diseases.
Front Public Health. 2024 May 17;12:1406566. doi: 10.3389/fpubh.2024.1406566. eCollection 2024.
3
A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
PLoS Comput Biol. 2021 Jul 26;17(7):e1009211. doi: 10.1371/journal.pcbi.1009211. eCollection 2021 Jul.
4
Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
Comput Biol Med. 2020 Oct;125:104011. doi: 10.1016/j.compbiomed.2020.104011. Epub 2020 Sep 25.
6
Epidemic Landscape and Forecasting of SARS-CoV-2 in India.
J Epidemiol Glob Health. 2021 Mar;11(1):55-59. doi: 10.2991/jegh.k.200823.001. Epub 2020 Aug 28.
9
Predictive model with analysis of the initial spread of COVID-19 in India.
Int J Med Inform. 2020 Nov;143:104262. doi: 10.1016/j.ijmedinf.2020.104262. Epub 2020 Aug 25.
10
The effect of population size for pathogen transmission on prediction of COVID-19 spread.
Sci Rep. 2021 Sep 9;11(1):18024. doi: 10.1038/s41598-021-97578-9.

引用本文的文献

1
Detecting outbreaks using a spatial latent field.
PLoS One. 2025 Jul 31;20(7):e0328770. doi: 10.1371/journal.pone.0328770. eCollection 2025.
2
A vaccination-based COVID-19 model: Analysis and prediction using Hamiltonian Monte Carlo.
Heliyon. 2024 Sep 23;10(19):e38204. doi: 10.1016/j.heliyon.2024.e38204. eCollection 2024 Oct 15.
3
A combined neural ODE-Bayesian optimization approach to resolve dynamics and estimate parameters for a modified SIR model with immune memory.
Heliyon. 2024 Sep 24;10(19):e38276. doi: 10.1016/j.heliyon.2024.e38276. eCollection 2024 Oct 15.
4
A data-driven semi-parametric model of SARS-CoV-2 transmission in the United States.
PLoS Comput Biol. 2023 Nov 8;19(11):e1011610. doi: 10.1371/journal.pcbi.1011610. eCollection 2023 Nov.
5
Hybrid prediction of infections and deaths due to COVID-19 in two Colombian data series.
PLoS One. 2023 Jun 8;18(6):e0286643. doi: 10.1371/journal.pone.0286643. eCollection 2023.
6
Responses to COVID-19 with probabilistic programming.
Front Public Health. 2022 Nov 21;10:953472. doi: 10.3389/fpubh.2022.953472. eCollection 2022.
7
Tracking the transmission dynamics of COVID-19 with a time-varying coefficient state-space model.
Stat Med. 2022 Jul 10;41(15):2745-2767. doi: 10.1002/sim.9382. Epub 2022 Mar 23.
8
A spatiotemporal machine learning approach to forecasting COVID-19 incidence at the county level in the USA.
Int J Data Sci Anal. 2023;15(3):247-266. doi: 10.1007/s41060-021-00295-9. Epub 2022 Jan 15.
9
Framework for enhancing the estimation of model parameters for data with a high level of uncertainty.
Nonlinear Dyn. 2022;107(3):1919-1936. doi: 10.1007/s11071-021-07069-9. Epub 2022 Jan 7.
10
Merits and Limitations of Mathematical Modeling and Computational Simulations in Mitigation of COVID-19 Pandemic: A Comprehensive Review.
Arch Comput Methods Eng. 2022;29(2):1311-1337. doi: 10.1007/s11831-021-09634-2. Epub 2021 Aug 11.

本文引用的文献

1
Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model.
J Am Stat Assoc. 2012;107(500):1410-1426. doi: 10.1080/01621459.2012.713876. Epub 2012 Dec 21.
2
INFEKTA-An agent-based model for transmission of infectious diseases: The COVID-19 case in Bogotá, Colombia.
PLoS One. 2021 Feb 19;16(2):e0245787. doi: 10.1371/journal.pone.0245787. eCollection 2021.
3
Prediction of the COVID-19 outbreak in China based on a new stochastic dynamic model.
Sci Rep. 2020 Dec 9;10(1):21522. doi: 10.1038/s41598-020-76630-0.
4
Forecasting for COVID-19 has failed.
Int J Forecast. 2022 Apr-Jun;38(2):423-438. doi: 10.1016/j.ijforecast.2020.08.004. Epub 2020 Aug 25.
5
A stochastic agent-based model of the SARS-CoV-2 epidemic in France.
Nat Med. 2020 Sep;26(9):1417-1421. doi: 10.1038/s41591-020-1001-6. Epub 2020 Jul 14.
6
Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe.
Nature. 2020 Aug;584(7820):257-261. doi: 10.1038/s41586-020-2405-7. Epub 2020 Jun 8.
7
COVID-19 and Postinfection Immunity: Limited Evidence, Many Remaining Questions.
JAMA. 2020 Jun 9;323(22):2245-2246. doi: 10.1001/jama.2020.7869.
8
Antibody responses to SARS-CoV-2 in patients with COVID-19.
Nat Med. 2020 Jun;26(6):845-848. doi: 10.1038/s41591-020-0897-1. Epub 2020 Apr 29.
9
Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy.
Nat Med. 2020 Jun;26(6):855-860. doi: 10.1038/s41591-020-0883-7. Epub 2020 Apr 22.
10
Temporal dynamics in viral shedding and transmissibility of COVID-19.
Nat Med. 2020 May;26(5):672-675. doi: 10.1038/s41591-020-0869-5. Epub 2020 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验