Suppr超能文献

房室模型在预测 COVID-19 爆发中的应用。

Usage of Compartmental Models in Predicting COVID-19 Outbreaks.

机构信息

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.

出版信息

AAPS J. 2022 Sep 2;24(5):98. doi: 10.1208/s12248-022-00743-9.

Abstract

Accurately predicting the spread of the SARS-CoV-2, the cause of the COVID-19 pandemic, is of great value for global regulatory authorities to overcome a number of challenges including medication shortage, outcome of vaccination, and control strategies planning. Modeling methods that are used to simulate and predict the spread of COVID-19 include compartmental model, structured metapopulations, agent-based networks, deep learning, and complex network, with compartmental modeling as one of the most widely used methods. Compartmental model has two noteworthy features, a flexible framework that allows users to easily customize the model structure and its high adaptivity that allows well-matured approaches (e.g., Bayesian inference and mixed-effects modeling) to improve parameter estimation. We retrospectively evaluated the prediction performances of the compartmental models on the CDC COVID-19 Mathematical Modeling webpage based on data collected between August 2020 and February 2021, and subsequently discussed in detail their corresponding model enhancement. Finally, we presented examples using the compartmental models to assist policymaking. By evaluating all models in parallel, we systemically evaluated the performance and evolution of using compartmental models for COVID-19 pandemic prediction. In summary, as a 100-year-old epidemic approach, the compartmental model presents a powerful tool that is extremely adaptive and can be readily customized and implemented to address new data or emerging needs during a pandemic.

摘要

准确预测导致 COVID-19 大流行的 SARS-CoV-2 的传播,对于全球监管机构克服许多挑战具有重要意义,包括药物短缺、疫苗接种效果和控制策略规划。用于模拟和预测 COVID-19 传播的建模方法包括房室模型、结构化的复合种群、基于代理的网络、深度学习和复杂网络,其中房室建模是最广泛使用的方法之一。房室模型具有两个显著特点,一是灵活的框架,允许用户轻松定制模型结构;二是高度适应性,允许成熟的方法(例如贝叶斯推断和混合效应建模)改进参数估计。我们回顾性地评估了基于 2020 年 8 月至 2021 年 2 月期间收集的数据,在 CDC COVID-19 数学建模网页上使用房室模型进行预测的性能,并随后详细讨论了它们的相应模型增强。最后,我们通过使用房室模型来协助制定政策,提供了一些示例。通过并行评估所有模型,我们系统地评估了使用房室模型进行 COVID-19 大流行预测的性能和演变。总之,作为一种百年历史的流行疾病研究方法,房室模型提供了一个强大的工具,它具有极强的适应性,可以轻松定制和实施,以应对大流行期间新出现的数据或新出现的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fa2/9439263/03db819d0956/12248_2022_743_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验