Suppr超能文献

基于磁共振成像和临床数据的人工智能模型预测直肠癌全新辅助治疗反应。

Predicting Rectal Cancer Response to Total Neoadjuvant Treatment Using an Artificial Intelligence Model Based on Magnetic Resonance Imaging and Clinical Data.

机构信息

Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231186467. doi: 10.1177/15330338231186467.

Abstract

PURPOSE

To develop a model for predicting response to total neoadjuvant treatment (TNT) for patients with locally advanced rectal cancer (LARC) based on baseline magnetic resonance imaging (MRI) and clinical data using artificial intelligence methods.

METHODS

Baseline MRI and clinical data were curated from patients with LARC and analyzed using logistic regression (LR) and deep learning (DL) methods to predict TNT response retrospectively. We defined two groups of response to TNT as pathological complete response (pCR) versus non-pCR (Group 1), and high sensitivity [tumor regression grade (TRG) 0 and TRG 1] versus moderate sensitivity (TRG 2 or patients with TRG 3 and a reduction in tumor volume of at least 20% compared to baseline) versus low sensitivity (TRG 3 and a reduction in tumor volume <20% compared to baseline) (Group 2). We extracted and selected clinical and radiomic features on baseline T2WI. Then we built LR models and DL models. Receiver operating characteristic (ROC) curves analysis was performed to assess predictive performance of models.

RESULTS

Eighty-nine patients were assigned to the training cohort, and 29 patients were assigned to the testing cohort. The area under receiver operating characteristics curve (AUC) of LR models, which were predictive of high sensitivity and pCR, were 0.853 and 0.866, respectively. Whereas the AUCs of DL models were 0.829 and 0.838, respectively. After 10 rounds of cross validation, the accuracy of the models in Group 1 is higher than in Group 2.

CONCLUSION

There was no significant difference between LR model and DL model. Artificial Intelligence-based radiomics biomarkers may have potential clinical implications for adaptive and personalized therapy.

摘要

目的

利用人工智能方法,基于基线磁共振成像(MRI)和临床数据,为局部晚期直肠癌(LARC)患者建立预测全新辅助治疗(TNT)反应的模型。

方法

从 LARC 患者中提取基线 MRI 和临床数据,并使用逻辑回归(LR)和深度学习(DL)方法进行回顾性分析,以预测 TNT 反应。我们将 TNT 反应定义为病理完全缓解(pCR)与非 pCR(第 1 组),以及高灵敏度[肿瘤消退分级(TRG)0 和 TRG 1]与中灵敏度(TRG 2 或 TRG 3 且肿瘤体积较基线减少至少 20%)与低灵敏度(TRG 3 且肿瘤体积较基线减少<20%)(第 2 组)。我们在基线 T2WI 上提取和选择临床和放射组学特征。然后我们构建了 LR 模型和 DL 模型。进行了受试者工作特征(ROC)曲线分析以评估模型的预测性能。

结果

89 名患者被分配到训练队列,29 名患者被分配到测试队列。预测高灵敏度和 pCR 的 LR 模型的 ROC 曲线下面积(AUC)分别为 0.853 和 0.866,而 DL 模型的 AUC 分别为 0.829 和 0.838。经过 10 次交叉验证,模型在第 1 组中的准确率高于第 2 组。

结论

LR 模型和 DL 模型之间没有显著差异。基于人工智能的放射组学标志物可能对适应性和个性化治疗具有潜在的临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbd/10338728/ecbc5dbafb01/10.1177_15330338231186467-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验