Suppr超能文献

深度学习与传统机器学习方法在自动识别超声图像肝癌区域的比较。

Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.

机构信息

Computer Science Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj Napoca, Romania.

Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania.

出版信息

Sensors (Basel). 2020 May 29;20(11):3085. doi: 10.3390/s20113085.

Abstract

The emergence of deep-learning methods in different computer vision tasks has proved to offer increased detection, recognition or segmentation accuracy when large annotated image datasets are available. In the case of medical image processing and computer-aided diagnosis within ultrasound images, where the amount of available annotated data is smaller, a natural question arises: are deep-learning methods better than conventional machine-learning methods? How do the conventional machine-learning methods behave in comparison with deep-learning methods on the same dataset? Based on the study of various deep-learning architectures, a lightweight multi-resolution Convolutional Neural Network (CNN) architecture is proposed. It is suitable for differentiating, within ultrasound images, between the Hepatocellular Carcinoma (HCC), respectively the cirrhotic parenchyma (PAR) on which HCC had evolved. The proposed deep-learning model is compared with other CNN architectures that have been adapted by transfer learning for the ultrasound binary classification task, but also with conventional machine-learning (ML) solutions trained on textural features. The achieved results show that the deep-learning approach overcomes classical machine-learning solutions, by providing a higher classification performance.

摘要

深度学习方法在不同的计算机视觉任务中的出现已经证明,在有大量标注图像数据集的情况下,可以提高检测、识别或分割的准确性。在医学图像处理和超声图像中的计算机辅助诊断中,由于可用的标注数据量较小,自然而然就会产生这样一个问题:深度学习方法是否优于传统的机器学习方法?在相同的数据集上,传统的机器学习方法与深度学习方法相比表现如何?基于对各种深度学习架构的研究,提出了一种轻量级多分辨率卷积神经网络(CNN)架构。它适用于在超声图像中区分肝细胞癌(HCC)和 HCC 演变而来的肝硬化实质(PAR)。将所提出的深度学习模型与其他经过迁移学习适用于超声二分类任务的 CNN 架构进行了比较,也与基于纹理特征训练的传统机器学习(ML)解决方案进行了比较。所得到的结果表明,深度学习方法通过提供更高的分类性能,克服了经典的机器学习解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d12/7309124/5efb9cc5d579/sensors-20-03085-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验