蛋白质吸附及其对纳米纤维素/碳纳米管复合电极电分析性能的影响。
Protein Adsorption and Its Effects on Electroanalytical Performance of Nanocellulose/Carbon Nanotube Composite Electrodes.
机构信息
Department of Chemistry and Materials Science, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.
Sustainable Products and Materials, VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland.
出版信息
Biomacromolecules. 2023 Aug 14;24(8):3806-3818. doi: 10.1021/acs.biomac.3c00449. Epub 2023 Jul 11.
Protein fouling is a critical issue in the development of electrochemical sensors for medical applications, as it can significantly impact their sensitivity, stability, and reliability. Modifying planar electrodes with conductive nanomaterials that possess a high surface area, such as carbon nanotubes (CNTs), has been shown to significantly improve fouling resistance and sensitivity. However, the inherent hydrophobicity of CNTs and their poor dispersibility in solvents pose challenges in optimizing such electrode architectures for maximum sensitivity. Fortunately, nanocellulosic materials offer an efficient and sustainable approach to achieving effective functional and hybrid nanoscale architectures by enabling stable aqueous dispersions of carbon nanomaterials. Additionally, the inherent hygroscopicity and fouling-resistant nature of nanocellulosic materials can provide superior functionalities in such composites. In this study, we evaluate the fouling behavior of two nanocellulose (NC)/multiwalled carbon nanotube (MWCNT) composite electrode systems: one using sulfated cellulose nanofibers and another using sulfated cellulose nanocrystals. We compare these composites to commercial MWCNT electrodes without nanocellulose and analyze their behavior in physiologically relevant fouling environments of varying complexity using common outer- and inner-sphere redox probes. Additionally, we use quartz crystal microgravimetry with dissipation monitoring (QCM-D) to investigate the behavior of amorphous carbon surfaces and nanocellulosic materials in fouling environments. Our results demonstrate that the NC/MWCNT composite electrodes provide significant advantages for measurement reliability, sensitivity, and selectivity over only MWCNT-based electrodes, even in complex physiological monitoring environments such as human plasma.
蛋白质污染是医疗应用电化学传感器发展中的一个关键问题,因为它会显著影响传感器的灵敏度、稳定性和可靠性。用具有高表面积的导电纳米材料(如碳纳米管 (CNT))来修饰平面电极,已被证明可以显著提高抗污染性和灵敏度。然而,CNT 的固有疏水性及其在溶剂中的分散性差,给优化此类电极结构以获得最大灵敏度带来了挑战。幸运的是,纳米纤维素材料通过实现碳纳米材料在水中的稳定分散,为有效功能化和混合纳米尺度结构提供了一种高效且可持续的方法。此外,纳米纤维素材料的固有吸湿性和抗污染性可以在这些复合材料中提供卓越的功能。在这项研究中,我们评估了两种纳米纤维素 (NC)/多壁碳纳米管 (MWCNT) 复合电极系统的污染行为:一种使用硫酸化纤维素纳米纤维,另一种使用硫酸化纤维素纳米晶体。我们将这些复合材料与没有纳米纤维素的商业 MWCNT 电极进行比较,并使用常见的外球和内球氧化还原探针分析它们在不同复杂程度的生理相关污染环境中的行为。此外,我们使用石英晶体微天平与耗散监测 (QCM-D) 来研究无定形碳表面和纳米纤维素材料在污染环境中的行为。我们的结果表明,NC/MWCNT 复合电极在测量可靠性、灵敏度和选择性方面相对于仅基于 MWCNT 的电极具有显著优势,即使在复杂的生理监测环境(如人血浆)中也是如此。