Suppr超能文献

γ-氨基丁酸利用受损的大肠杆菌K-12突变体的分离与特性

Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate.

作者信息

Metzer E, Levitz R, Halpern Y S

出版信息

J Bacteriol. 1979 Mar;137(3):1111-8. doi: 10.1128/jb.137.3.1111-1118.1979.

Abstract

We have isolated mutants of Escherichia coli K-12 CS101B that have lost the ability to utilize gamma-aminobutyrate as a source of nitrogen. One class of mutants, which were not affected in the utilization of other nitrogen sources (proline, arginine, glycine), included many isolates with lesions in gamma-aminobutyrate transport or in its transamination and one mutant completely devoid of succinic semialdehyde dehydrogenase activity and exhibiting low gamma-aminobutyrate transport and transamination. gamma-Aminobutyrate-utilizing revertants of the latter recovered full transport and transamination capacities but remained dehydrogenaseless. Another class of mutants showed pleiotropic defects in nitrogen metabolism. One such mutant was lacking glutamate synthase activity. The genes specifying the synthesis of gamma-aminobutyrate permease, gabP, gamma-aminobutyrate transaminase, gabT, and succinic semialdehyde dehydrogenase, gabD, and the control gene, gabC, that coordinately regulates their expression all form a cluster on the E. coli chromosome, linked to the srl and recA loci (at 57.5 min). The mutations with pleiotropic effects on the metabolism of nitrogenous compounds are not linked to the gab cluster.

摘要

我们已经分离出了大肠杆菌K - 12 CS101B的突变体,这些突变体丧失了将γ-氨基丁酸作为氮源利用的能力。一类突变体在利用其他氮源(脯氨酸、精氨酸、甘氨酸)方面未受影响,其中包括许多在γ-氨基丁酸转运或其转氨作用方面有损伤的分离株,还有一个突变体完全缺乏琥珀酸半醛脱氢酶活性,且γ-氨基丁酸转运和转氨作用较低。后一种突变体的利用γ-氨基丁酸的回复突变体恢复了完全的转运和转氨能力,但仍然没有脱氢酶活性。另一类突变体在氮代谢方面表现出多效性缺陷。其中一个这样的突变体缺乏谷氨酸合酶活性。编码γ-氨基丁酸通透酶(gabP)、γ-氨基丁酸转氨酶(gabT)和琥珀酸半醛脱氢酶(gabD)合成的基因,以及协调调节它们表达的控制基因gabC,在大肠杆菌染色体上都形成一个簇,与srl和recA基因座相连(位于57.5分钟处)。对含氮化合物代谢有多效性影响的突变与gab簇不连锁。

相似文献

1
Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate.
J Bacteriol. 1979 Mar;137(3):1111-8. doi: 10.1128/jb.137.3.1111-1118.1979.
2
The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction.
J Bacteriol. 2002 Dec;184(24):6976-86. doi: 10.1128/JB.184.24.6976-6986.2002.
5
Specificity and regulation of gamma-aminobutyrate transport in Escherichia coli.
J Bacteriol. 1978 Aug;135(2):295-9. doi: 10.1128/jb.135.2.295-299.1978.
8
Genetic analysis of the gamma-aminobutyrate utilization pathway in Escherichia coli K-12.
J Bacteriol. 1974 Feb;117(2):494-501. doi: 10.1128/jb.117.2.494-501.1974.
9
In vivo cloning and characterization of the gabCTDP gene cluster of Escherichia coli K-12.
J Bacteriol. 1990 Jun;172(6):3250-6. doi: 10.1128/jb.172.6.3250-3256.1990.
10
GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis.
Mol Microbiol. 2002 Jul;45(2):569-83. doi: 10.1046/j.1365-2958.2002.03036.x.

引用本文的文献

1
The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction.
J Bacteriol. 2002 Dec;184(24):6976-86. doi: 10.1128/JB.184.24.6976-6986.2002.
2
pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli.
J Bacteriol. 2002 Aug;184(15):4246-58. doi: 10.1128/JB.184.15.4246-4258.2002.
3
Interplasmidic and intraplasmidic recombination in Escherichia coli K-12.
Mol Gen Genet. 1981;184(2):200-7. doi: 10.1007/BF00272905.
4
Complementation tests between alkaline phosphatase-constitutive mutants (phoS and phoT) of Escherichia coli.
J Bacteriol. 1981 Mar;145(3):1432-5. doi: 10.1128/jb.145.3.1432-1435.1981.
5
6
Linkage map of Escherichia coli K-12, edition 6.
Microbiol Rev. 1980 Mar;44(1):1-56. doi: 10.1128/mr.44.1.1-56.1980.
7
8
Regulation of nitrogen metabolism in glutamine auxotrophs of Klebsiella pneumoniae.
J Bacteriol. 1980 Apr;142(1):99-110. doi: 10.1128/jb.142.1.99-110.1980.

本文引用的文献

1
Mutants of Escherichia coli requiring methionine or vitamin B12.
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Selecting bacterial mutants by the penicillin method.
Science. 1960 Feb 26;131(3400):604-5. doi: 10.1126/science.131.3400.604.
4
Transduction of linked genetic characters of the host by bacteriophage P1.
Virology. 1955 Jul;1(2):190-206. doi: 10.1016/0042-6822(55)90016-7.
5
Genetic analysis of glutamate transport and glutamate decarboxylase in Escherichia coli.
J Bacteriol. 1967 Apr;93(4):1409-15. doi: 10.1128/jb.93.4.1409-1415.1967.
6
Early stages of conjugation in Escherichia coli.
J Bacteriol. 1969 Nov;100(2):1091-104. doi: 10.1128/jb.100.2.1091-1104.1969.
7
Genetic analysis of the gamma-aminobutyrate utilization pathway in Escherichia coli K-12.
J Bacteriol. 1974 Feb;117(2):494-501. doi: 10.1128/jb.117.2.494-501.1974.
8
Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K-12.
J Bacteriol. 1973 Feb;113(2):798-812. doi: 10.1128/jb.113.2.798-812.1973.
9
Escherichia coli K-12 F-prime factors, old and new.
Bacteriol Rev. 1972 Dec;36(4):587-607. doi: 10.1128/br.36.4.587-607.1972.
10
Pedigrees of some mutant strains of Escherichia coli K-12.
Bacteriol Rev. 1972 Dec;36(4):525-57. doi: 10.1128/br.36.4.525-557.1972.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验