Suppr超能文献

大肠杆菌中γ-氨基丁酸转运的特异性与调控

Specificity and regulation of gamma-aminobutyrate transport in Escherichia coli.

作者信息

Kahane S, Levitz R, Halpern Y S

出版信息

J Bacteriol. 1978 Aug;135(2):295-9. doi: 10.1128/jb.135.2.295-299.1978.

Abstract

A specific gamma-aminobutyrate (GABA) transport system in Escherichia coli K-12 cells with a K(m) of 12 muM and a V(max) of 278 nmol/ml of intracellular water per min is described. Membrane vesicles contained d-lactate-dependent activity of the system. Mutants defective in GABA transport were isolated; they lost the ability to utilize GABA as a nitrogen source, although the activities of glutamate-succinylsemialdehyde transaminase (GSST) (EC 2.6.1.19) and succinylsemialdehyde dehydrogenase (SSDH) (EC 1.2.1.16), the enzymes that catalyze GABA utilization, remained as high as in the parental CS101B strain. The ability to utilize l-ornithine, l-arginine, putrescine, l-proline, and glycine as a nitrogen source was preserved in the mutants. The genetic lesions resulting in the loss of GABA transport, gabP5 and gabP9, mapped in the gab gene cluster in close linkage to gabT and gabD, the structural genes of GSST and SSDH, and to gabC, a gene controlling the utilization of GABA, arginine, putrescine, and ornithine. The synthesis of the GABA transport carrier is subject to dual physiological control by (i) catabolite repression and (ii) nitrogen availability. Experiments with glutamine synthetase (EC 6.3.1.2)-negative and with glutamine synthetase-constitutive strains strongly indicate that this enzyme is the effector in the regulation of GABA carrier synthesis by route (ii).

摘要

本文描述了大肠杆菌K-12细胞中一种特定的γ-氨基丁酸(GABA)转运系统,其米氏常数(K(m))为12 μM,最大反应速度(V(max))为每分钟每毫升细胞内水278 nmol。膜囊泡含有该系统的d-乳酸依赖性活性。分离出了GABA转运缺陷的突变体;它们丧失了利用GABA作为氮源的能力,尽管催化GABA利用的谷氨酸-琥珀酰半醛转氨酶(GSST)(EC 2.6.1.19)和琥珀酰半醛脱氢酶(SSDH)(EC 1.2.1.16)的活性与亲本CS101B菌株一样高。这些突变体保留了利用l-鸟氨酸、l-精氨酸、腐胺、l-脯氨酸和甘氨酸作为氮源的能力。导致GABA转运丧失的遗传损伤gabP5和gabP9定位于gab基因簇中,与GSST和SSDH的结构基因gabT和gabD以及控制GABA、精氨酸、腐胺和鸟氨酸利用的基因gabC紧密连锁。GABA转运载体的合成受到两种生理控制:(i)分解代谢物阻遏和(ii)氮的可利用性。用谷氨酰胺合成酶(EC 6.3.1.2)阴性和谷氨酰胺合成酶组成型菌株进行的实验强烈表明,该酶是通过途径(ii)调节GABA载体合成的效应物。

相似文献

1
Specificity and regulation of gamma-aminobutyrate transport in Escherichia coli.
J Bacteriol. 1978 Aug;135(2):295-9. doi: 10.1128/jb.135.2.295-299.1978.
2
Genetic analysis of the gamma-aminobutyrate utilization pathway in Escherichia coli K-12.
J Bacteriol. 1974 Feb;117(2):494-501. doi: 10.1128/jb.117.2.494-501.1974.
3
Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate.
J Bacteriol. 1979 Mar;137(3):1111-8. doi: 10.1128/jb.137.3.1111-1118.1979.
4
The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction.
J Bacteriol. 2002 Dec;184(24):6976-86. doi: 10.1128/JB.184.24.6976-6986.2002.
5
Regulation of gamma-aminobutyric acid degradation in Escherichia coli by nitrogen metabolism enzymes.
J Bacteriol. 1978 Feb;133(2):447-51. doi: 10.1128/jb.133.2.447-451.1978.
7
Control of the pathway of -aminobutyrate breakdown in Escherichia coli K-12.
J Bacteriol. 1972 Apr;110(1):165-70. doi: 10.1128/jb.110.1.165-170.1972.
9
In vivo cloning and characterization of the gabCTDP gene cluster of Escherichia coli K-12.
J Bacteriol. 1990 Jun;172(6):3250-6. doi: 10.1128/jb.172.6.3250-3256.1990.

引用本文的文献

1
Potential Roles for Gamma-Aminobutyric Acid Signaling in Bacterial Communities.
Bioelectricity. 2021 Jun 1;3(2):120-125. doi: 10.1089/bioe.2021.0012. Epub 2021 Jun 16.
3
Regulatory influences on the production of gamma-aminobutyric Acid by a marine pseudomonad.
Appl Environ Microbiol. 1992 Jan;58(1):237-42. doi: 10.1128/aem.58.1.237-242.1992.
6
The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction.
J Bacteriol. 2002 Dec;184(24):6976-86. doi: 10.1128/JB.184.24.6976-6986.2002.
7
Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli.
Microbiol Mol Biol Rev. 2001 Sep;65(3):422-44, table of contents. doi: 10.1128/MMBR.65.3.422-444.2001.
8
Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation.
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14674-9. doi: 10.1073/pnas.97.26.14674.

本文引用的文献

1
Mutants of Escherichia coli requiring methionine or vitamin B12.
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
2
STUDIES ON TRYPTOPHAN PERMEASE IN ESCHERICHIA COLI.
Biochim Biophys Acta. 1963 Aug 6;73:623-37. doi: 10.1016/0006-3002(63)90332-9.
3
Glutamate transport in wild-type and mutant strains of Escherichia coli.
J Bacteriol. 1965 Nov;90(5):1288-95. doi: 10.1128/jb.90.5.1288-1295.1965.
4
Basic amino acid transport in Escherichia coli: properties of canavanine-resistant mutants.
J Bacteriol. 1973 Nov;116(2):627-35. doi: 10.1128/jb.116.2.627-635.1973.
5
Control of the pathway of -aminobutyrate breakdown in Escherichia coli K-12.
J Bacteriol. 1972 Apr;110(1):165-70. doi: 10.1128/jb.110.1.165-170.1972.
6
Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants.
J Bacteriol. 1972 Feb;109(2):835-43. doi: 10.1128/jb.109.2.835-843.1972.
8
Activation of transcription of hut DNA by glutamine synthetase.
Proc Natl Acad Sci U S A. 1974 Jan;71(1):225-9. doi: 10.1073/pnas.71.1.225.
9
Transport properties of merodiploids covering the dagA locus in Escherichia coli K-12.
J Bacteriol. 1975 Jun;122(3):1001-5. doi: 10.1128/jb.122.3.1001-1005.1975.
10
Regulation of branched-chain amino acid transport in Escherichia coli.
J Bacteriol. 1976 Sep;127(3):1225-38. doi: 10.1128/jb.127.3.1225-1238.1976.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验