Suppr超能文献

来自真菌的几丁质纳米纤维用于具有稳定锌电沉积的瞬态锌离子电池的分级凝胶聚合物电解质

Chitin Nanofibrils from Fungi for Hierarchical Gel Polymer Electrolytes for Transient Zinc-Ion Batteries with Stable Zn Electrodeposition.

作者信息

Ruiz Diego, Michel Veronica F, Niederberger Markus, Lizundia Erlantz

机构信息

Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland.

Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.

出版信息

Small. 2023 Nov;19(45):e2303394. doi: 10.1002/smll.202303394. Epub 2023 Jul 11.

Abstract

Rechargeable batteries play an integral role toward carbon neutrality. Environmentally sustainable batteries should consider the trade-offs between material renewability, processability, thermo-mechanical and electrochemical performance, as well as transiency. To address this dilemma, we follow circular economy principles to fabricate fungal chitin nanofibril (ChNF) gel polymer electrolytes (GPEs) for zinc-ion batteries. These biocolloids are physically entangled into hierarchical hydrogels with specific surface areas of 49.5 m ·g . Ionic conductivities of 54.1 mS·cm and a Zn transference number of 0.468 are reached, outperforming conventional non-renewable/non-biodegradable glass microfibre separator-liquid electrolyte pairs. Enabled by its mechanically elastic properties and large water uptake, a stable Zn electrodeposition in symmetric Zn|Zn configuration with a lifespan above 600 h at 9.5 mA·cm is obtained. At 100 mA·g , the discharge capacity of Zn/α-MnO full cells increases above 500 cycles when replacing glass microfiber separators with ChNF GPEs, while the rate performance remains comparable to glass microfiber separators. To make the battery completely transient, the metallic current collectors are replaced by biodegradable polyester/carbon black composites undergoing degradation in water at 70 °C. This work demonstrates the applicability of bio-based materials to fabricate green and electrochemically competitive batteries with potential applications in sustainable portable electronics, or biomedicine.

摘要

可充电电池在实现碳中和方面发挥着不可或缺的作用。环境可持续型电池应考虑材料可再生性、可加工性、热机械和电化学性能以及瞬态性之间的权衡。为了解决这一难题,我们遵循循环经济原则,制备用于锌离子电池的真菌几丁质纳米纤维(ChNF)凝胶聚合物电解质(GPE)。这些生物胶体物理缠结成分级水凝胶,比表面积为49.5 m²·g⁻¹。离子电导率达到54.1 mS·cm⁻¹,锌迁移数为0.468,性能优于传统的不可再生/不可生物降解的玻璃微纤维隔膜-液体电解质对。由于其机械弹性性能和高吸水性,在对称的Zn|Zn配置中实现了稳定的锌电沉积,在9.5 mA·cm⁻²的电流密度下寿命超过600小时。在100 mA·g⁻¹的电流密度下,当用ChNF GPE替代玻璃微纤维隔膜时,Zn/α-MnO全电池的放电容量在500次循环以上增加,同时倍率性能与玻璃微纤维隔膜相当。为了使电池完全瞬态化,金属集流体被可生物降解的聚酯/炭黑复合材料取代,该复合材料在70°C的水中会降解。这项工作证明了生物基材料在制造绿色且具有电化学竞争力的电池方面的适用性,这些电池在可持续便携式电子产品或生物医学领域具有潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验